
www.manaraa.com

University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

4-2011

Polygonal Spatial Clustering
Deepti Joshi
University of Nebraska-Lincoln, djoshi81@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Sciences Commons, and the Other Computer Engineering Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Joshi, Deepti, "Polygonal Spatial Clustering" (2011). Computer Science and Engineering: Theses, Dissertations, and Student Research. 16.
http://digitalcommons.unl.edu/computerscidiss/16

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/16?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

POLYGONAL SPATIAL CLUSTERING

by

Deepti Joshi

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professors Ashok Samal and Leen-Kiat Soh

Lincoln, Nebraska

May, 2011

www.manaraa.com

POLYGONAL SPATIAL CLUSTERING

Deepti Joshi, Ph.D.

University of Nebraska, 2011

Adviser: Ashok Samal and Leen-Kiat Soh

Clustering, the process of grouping together similar objects, is a fundamental task in data

mining to help perform knowledge discovery in large datasets. With the growing number of sen-

sor networks, geospatial satellites, global positioning devices, and human networks tremendous

amounts of spatio-temporal data that measure the state of the planet Earth are being collected

every day. This large amount of spatio-temporal data has increased the need for efficient spatial

data mining techniques. Furthermore, most of the anthropogenic objects in space are represented

using polygons, for example – counties, census tracts, and watersheds. Therefore, it is important

to develop data mining techniques specifically addressed to mining polygonal data. In this re-

search we focus on clustering geospatial polygons with fixed space and time coordinates.

Polygonal datasets are more complex than point datasets because polygons have topolog-

ical and directional properties that are not relevant to points, thus rendering most state-of-the-art

point-based clustering techniques not readily applicable. We have addressed four important sub-

problems in polygonal clustering. (1) We have developed a dissimilarity function that integrates

both non-spatial attributes and spatial structure and context of the polygons. (2) We have ex-

tended DBSCAN, the state-of-the-art density based clustering algorithm for point datasets, to po-

lygonal datasets and further extended it to handle polygonal obstacles. (3) We have designed a

suite of algorithms that incorporate user-defined constraints in the clustering process. (4) We have

www.manaraa.com

developed a spatio-temporal polygonal clustering algorithm that uniquely treats both space and

time as first-class citizens, and developed an algorithm to analyze the movement patterns in the

spatio-temporal polygonal clusters. In order to evaluate our algorithms we applied our algorithms

on real-life datasets from several diverse domains to solve practical problems such as congres-

sional redistricting, spatial epidemiology, crime mapping, and drought analysis. The results show

that our algorithms are effective in finding spatially compact and conceptually coherent clusters.

www.manaraa.com

ACKNOWLEDGEMENT

I would like to thank my advisors Dr. Ashok Samal and Dr. Leen-Kiat Soh for their con-

tinuous guidance and support throughout the course of my doctoral studies. They have helped me

become the scholar that I am today. Without their patience and faith in me, I wouldn‘t have ac-

complished the goal of finishing this dissertation. I am also thankful for the guidance of my su-

pervisory committee members: Dr. Peter Revesz, Dr. David Marx, and Dr. Xun-Hong Chen. I

would like to thank the Department of Computer Science and Engineering at the University of

Nebraska-Lincoln for providing me this great opportunity. Finally, I would like to thank my fami-

ly, especially my parents Mr. Ravinder Joshi and Mrs. Neelum Joshi, and my husband Mr. Arpit

Sharma for their continuous love and support.

I am also grateful to the National Science Foundation for funding my research. This dis-

sertation is based upon work supported by the National Science Foundation under Grants No.

0219970 and 0535255.

www.manaraa.com

i

Table of Contents
Chapter 1: Introduction ... 1

1.1 Applications ... 3

1.2 Problem Description .. 3

1.3 Proposed Approach .. 5

1.4 Research Contributions .. 6

1.5 Dissertation Overview ... 7

Chapter 2: A Dissimilarity Function for Geospatial Polygons ... 9

2.1 Introduction.. 9

2.2 Related Work ... 12

2.3 Dissimilarity Function for Geospatial Polygons .. 18

2.3.1 Distance between Non-Spatial Attributes ... 20

2.3.2 Distance between Spatial Attributes ... 21

2.4 Experimental Analysis ... 29

2.4.1 Comparative Analysis ... 30

2.4.2 Spatial Clustering Application .. 35

2.5 Conclusions and Future Work ... 46

Chapter 3: Density-Based Clustering of Polygons ... 49

3.1 Introduction.. 49

3.2 Related Work ... 50

3.2.1 Spatial Clustering Algorithms .. 50

3.2.2 Density-Based Concepts for Points .. 52

3.3 Density-Based Clustering of Polygons .. 53

3.3.1 Density-Based Concepts for Polygons ... 53

3.3.2 Distance Function for Polygons .. 56

3.3.3 P-DBSCAN Algorithm ... 57

3.4 Experimental Analysis ... 57

3.4.1 Analysis using Synthetic Dataset .. 59

3.4.2 Analysis using Real Datasets .. 60

3.4.3 Summary of Experiments ... 65

3.5 Conclusion and Future Work ... 66

Chapter 4: Density-Based Clustering of Polygons in the Presence of Obstacles 68

4.1 Introduction.. 68

www.manaraa.com

ii

4.2 Related Work ... 71

4.2.1 Spatial Clustering in the Presence of Obstacles .. 72

4.2.2 Density-Based Concepts for Polygons ... 74

4.3 Density-Based Clustering in the Presence of Obstacles .. 77

4.3.1 Preliminaries ... 77

4.3.2 Distance Function for Polygons in the Presence of Obstacles 82

4.3.3 Density-Based Concepts for Polygons in the Presence of Obstacles............................ 84

4.3.4 P-DBSCAN+ Algorithm ... 85

4.3.5 Computational Complexity of P-DBSCAN+ ... 86

4.3.6 P-DBSCAN++ .. 87

4.4 Experimental Analysis ... 88

4.4.1 Experiment with Synthetic Dataset ... 89

4.4.2 Experiment with Lincoln Census Tract Dataset ... 91

4.5 Conclusion and Future Work ... 94

Chapter 5: Constraint-Based Clustering of Polygons ... 97

5.1 Introduction.. 97

5.2 Related Work ... 100

5.2.1 Graph Partitioning .. 101

5.2.2 Simulated Annealing .. 102

5.2.3 Genetic Algorithms ... 104

5.2.4 Comparison with the CPSC family ... 105

5.3 Constrained Polygonal Spatial Clustering Algorithms .. 106

5.3.1 Preliminaries ... 106

5.3.2 The CPSC Algorithm .. 113

5.3.3 Extensions of CPSC .. 117

5.4 Applications to Real-World Problems ... 121

5.4.1 The Congressional Redistricting Problem .. 122

5.4.2 The School District Formation Problem ... 125

5.5 Experimental Analysis ... 127

5.5.1 Evaluation of CPSC on the Congressional Redistricting Application 127

5.5.2 Evaluation of Extensions of CPSC on the School District Application 132

5.5.3 Additional Analysis of CPSC Algorithms .. 135

5.6 Conclusion and Future Work ... 136

Chapter 6: Spatio-Temporal Polygonal Clustering with Space and Time as First-class Citizens139

www.manaraa.com

iii

6.1 Introduction.. 139

6.2 Related Work ... 142

6.2.1 Density-Based Clustering Principles .. 142

6.2.2 Detecting Spatio-Temporal Clusters ... 144

6.2.3 An Example .. 147

6.3 Spatio-Temporal Polygonal Clustering ... 149

6.3.1 Density-Based Concepts for Spatio-Temporal Polygons ... 149

6.3.2 Spatio-Temporal Polygonal Clustering (STPC) Algorithm .. 152

6.3.3 Selecting Input Parameters ... 154

6.3.4 Properties of a Spatio-Temporal Polygonal Cluster ... 155

6.4 Experimental Analysis ... 157

6.4.1 Comparative Analysis using the Drought Dataset .. 157

6.4.2 Application on Flu Dataset ... 161

6.4.3 Application on Crime Dataset... 164

6.5 Conclusion and Future Work ... 167

Chapter 7: Analysis of Movement Patterns in Spatio-Temporal Polygonal Clustering 171

7.1 Introduction.. 171

7.2 Related Work ... 175

7.3 Movements in a Spatio-Temporal Polygonal Cluster .. 177

7.4 Detecting Movements Patterns .. 181

7.5 Experimental Analysis ... 182

7.5.1 Detecting Movement Patterns in Swine Flu Clusters ... 183

7.5.2 Detecting Movement Patterns in Crime Clusters.. 186

7.5.3 Trend Analysis on California Drought Dataset .. 189

7.6 Conclusion and Future Work ... 190

Chapter 8: Conclusion ... 195

8.1 Summary of Significant Contributions .. 195

8.2 Directions for Future Research .. 196

References ... 198

www.manaraa.com

iv

List of Tables

Table 1: Different characteristics of spatial object attributes ... 24

Table 2: Different possible scenarios based on topological relationship of a linear feature (l) with

two polygons (A and B) ... 26

Table 3: Statistics and the distances between polygons using different distance functions (WB

Distance, CXY Distance, PXY Distance, PXY‘ Distance and PDF). 32

Table 4: Ranking of pair-wise distances between polygons .. 33

Table 5: Ranking of selected pair-wise distances between polygons .. 34

Table 6: Attributes for Watersheds .. 38

Table 7: Clustering results for Watershed Dataset ... 40

Table 8: Gap Statistic results for the watershed dataset ... 41

Table 9: Attributes for Counties polygons ... 42

Table 10: Clustering results for County Dataset .. 45

Table 11: Gap Statistic results for the county dataset .. 45

Table 12: Comparison of clustering results for Nebraska Dataset ... 129

Table 13: Comparison of clustering results for Nebraska Dataset (Contd.) 129

Table 14: Comparison of clustering results for Indiana Dataset .. 130

Table 15: Comparison of clustering results for Indiana Dataset (Contd.) 130

Table 16: Runtime Comparison (Minutes) on Intel Pentium processor T4300, 4GB memory ... 131

Table 17: School districts result statistics .. 134

Table 18: Assault clusters discovered by STPC using different parameter values 166

Table 19: Change statistics along with the movement code for selected assault spatio-temporal

clusters. .. 188

Table 20: Co-occurrence Matrix showing the Eight Movements that occur together for the

California drought dataset from Jan 2000 to May 2010. ... 190

www.manaraa.com

v

List of Figures

Figure 1: Separation distance where the transitive relation does not hold. 14

Figure 2: Minimum and maximum distance between vertices. ... 14

Figure 3: Comparison of Hausdorff distance with centroid distance. .. 15

Figure 4: Topological relationship between two polygons based on a linear feature – linear feature

may intersect the interior, exterior or the boundary of a polygon. 26

Figure 5: A set of census blocks in Lincoln, NE and the locations of the sites for liquor licenses.

 ... 31

Figure 6: Subset Sample Dataset 2, along with the pair-wise distances between the various

polygons. .. 35

Figure 7: (a) Polygons (subset of watersheds in Nebraska) used to form a cluster (b) Polygons

along with linear spatial objects. .. 36

Figure 8: (a) Polygons (subset of watersheds in Nebraska) used to form a cluster (b) Polygons

along with areal spatial objects. ... 37

Figure 9: Dataset for the first experiment – Watersheds in the state of Nebraska along with

selected streams and lakes used as spatial objects ... 38

Figure 10: Result of clustering watersheds with. k = 3 ((a),(c),(e)) and k = 4((b),(d),(f)) using

different combinations of non-spatial, structural and organizational attributes. 40

Figure 11: Dataset for the second experiment – Counties in the state of Nebraska along with the

point and linear spatial objects ... 42

Figure 12: Result of clustering counties with. k = 3 and k = 4 using different combinations of

non-spatial, structural and organizational attributes. ... 45

Figure 13: Radial spatial partitions of a polygon‘s neighborhood. Note that here the first

sector is as shown, and the ordering is clockwise. This is arbitrary for illustration

purpose. .. 54

Figure 14: Synthetic set of polygons (Red – Core Polygon, Green - -neighborhood of the core

polygons) ... 55

Figure 15: P-DBSCAN Algorithm ... 58

Figure 16: Result of clustering using DBSCAN (a) Polygons used for clustering (b) Expanded

version of dataset showing .. 59

Figure 17: Result of clustering using DBSCAN (a) (b) First core

polygon(Red) and its - neighborhood (Green) (c) Consecutive core polygon detected

and its -neighborhood (d) Further progression of core polygon detection belonging to

the same cluster (e) Final result – All polygons belong to the same cluster. 59

Figure 18: Result of clustering using P-DBSCAN (a) Polygons used for clustering
 (b) First core polygon(Red) and its -neighborhood

www.manaraa.com

vi

(Green) (c) Further progression of core polygon detection belonging to the same

cluster (d) Final result – All polygons belong to the same cluster 60

Figure 19: Census Tract Polygons in Nebraska dataset ... 61

Figure 20: Results of clustering using DBSCAN (a) (b)

 (c) (d) 61

Figure 21: Results of clustering using P-DBSCAN (a) (b)
 (c) (d) (e)

 (f) ... 62

Figure 22: Compactness Ratio for clusters formed using DBSCAN and P-DBSCAN 62

Figure 23: Census Tract Polygons in South Dakota dataset ... 63

Figure 24: Result of clustering using DBSCAN (a) (b)

 (d) 63

Figure 25: Results of clustering using P-DBSCAN (a) (b)
 (c) (d) 64

Figure 26: Compactness Ratio for clusters formed using DBSCAN and P-DBSCAN. 65

Figure 27: Radial spatial partitions of a polygon‘s neighborhood. Note that here the first

sector is as shown, and the ordering is clockwise. This is arbitrary for illustration

purpose. .. 75

Figure 28: Synthetic set of polygons (Red – Core Polygon, Green - -neighborhood of the core

polygons) ... 76

Figure 29: Sample visibility graph for a single polygon. O1 and O2 are obstacles while the lines

constitute the visibility graph. .. 78

Figure 30: Sample visibility graph for a set of polygons in the presence of obstacles. The purple-

outlined rectangles are polygons, the red polygons are obstacles with yellow-

highlighted zones of influence, and the blue lines constitute the visibility graph. 79

Figure 31: Polygons A & B are completely visible to each other .. 80

Figure 32: Polygon A and Polygon B are partially visible to each other under Type A partial

visibility ... 81

Figure 33: Polygon A and Polygon B are partially visible to each other under Type B partial

visibility ... 81

Figure 34: Polygon A and Polygon B are invisible to each other .. 81

Figure 35: Pre-PDBSCAN+ algorithm. ... 86

Figure 36: P-DBSCAN+ clustering algorithm. .. 86

Figure 37: (a) Lincoln, NE census tracts – 55 polygons with 1211 vertices. (b) Simplified

Lincoln, NE census tracts using the Douglas-Peucker algorithm – 55 polygons with

408 vertices. ... 88

Figure 38: Synthetic dataset with 110 polygons and 5 obstacles ... 90

www.manaraa.com

vii

Figure 39: Result of clustering using P-DBSCAN, i.e. without taking the obstacles into

consideration = 200 ... 90

Figure 40: Result of clustering using DBCLuC with = 200. ... 90

Figure 41: Result of clustering using P-DBSCAN+ with = 200 and. = 1.0 90

Figure 42: Result of clustering using P-DBSCAN++ with = 200 and = 1.0, 0.5 91

Figure 43: Census tract dataset of the city of Lincoln, NE with 55 polygons and 3 obstacles. 91

Figure 44: Census tract dataset of the city of Lincoln, NE with obstacles modeled as rectangular

polygons ... 91

Figure 45: Result of clustering using DBCLuC. .. 92

Figure 46: Result of clustering using P-DBSCAN+ with = 1.0 ... 94

Figure 47: Result of clustering using P-DBSCAN++ with = 1.0, 0.5 94

Figure 48: The CPSC Algorithm ... 116

Figure 49: CPSC* Algorithm ... 119

Figure 50: The CPSC*-PS Algorithm .. 121

Figure 51: (a) Results of Graph Partitioning Algo. (b) & (c) Results of SARA: Input (left) and

Output (right) plan 1 & 2 (d) Result of the Genetic Algorithm (e) Results of the

CPSC Algorithm (f) 110
th
 Congressional District Map for the state of Nebraska 128

Figure 52: Results for the Indiana dataset (a) Graph Partitioning Result (b) SARA Result (c) GA

Result (d) CPSC Results (e)Current Districts .. 130

Figure 53: (a) School District dataset (b) CPSC Result (c) CPSC* Result 133

Figure 54: Application of CPSC* and CPSC*-PS on a synthetic dataset. (a) The synthetic dataset

(b) Result of CPSC* (c) Result of CPSC*-PS ... 134

Figure 55: Application of CPSC on a synthetic dataset. Three initial seeds are color-coded as

blue, pink, and green. ... 136

Figure 56: (a) CPSC results with minimum population seeds (b) CPSC results with maximum

population seeds (c) CPSC results with maximum population seeds but with smaller

distance. ... 136

Figure 57: Sample dataset of polygons with drought at each time stamp . The centroids are shown

as dots within each polygon. .. 147

Figure 58: (a) Point-based spatio-temporal clusters formed using snapshot clustering approach.

(b) Polygonal spatio-temporal clusters using time as a first-class citizen. 148

Figure 59: Spatio-temporal neighborhood (green polygons) of polygon (red polygon) 151

Figure 60: A Drought Spatio-Temporal Cluster (red polygons) .. 152

Figure 61: The Spatio-Temporal Polygonal Clustering (STPC) Algorithm with Strong

Uniformity.. 154

www.manaraa.com

viii

Figure 62: (a) Point representation of drought counties of Nebraska - Dataset for the MC and

CMC algorithms (b) Counties of the state of Nebraska – Dataset for the STPC

algorithm. The discrete time scale for both the datasets is weekly. 158

Figure 63: Sample drought monitor maps from http://drought.unl.edu/dm/archive.html showing

the three drought clusters. .. 158

Figure 64: Result of the STPC algorithm – The three smaller clusters are the drought clusters . 160

Figure 65: Cluster densities across space and time as discovered by the MC, CMC, VCoDA,

STPC, and COT Algorithms for the NE drought dataset ... 161

Figure 66: Clusters discovered by STPC with , , 163

Figure 67: Clusters discovered by STPC with , , 164

Figure 68: Clusters discovered by STPC with , , 164

Figure 69: (a) Census block groups in the city of Lincoln, NE (b) Crime locations for the years of

2005 – 2009 in the city of Lincoln, NE. ... 165

Figure 70: Selected assault spatio-temporal clusters discovered by STPC using the parameter

values: with space shown as one-

dimension along the x-axis, and time along the y-axis. ... 168

Figure 71: The spatio-temporal Cluster 6 in Figure 14 spanning from September 28, 2006 until

October 6, 2006 .. 169

Figure 72: (a) A simplistic spatio-temporal cluster (b) ST-slices of the spatio-temporal cluster (c)

TS-slices of the spatio-temporal cluster ... 173

Figure 73: Primitive events for polygons ... 176

Figure 74: Movement patterns for polygons .. 177

Figure 75: Comparison of ST-slices .. 178

Figure 76: The number of connected-components Algorithm .. 180

Figure 77: Different types of movements that a polygonal spatio-temporal cluster may undergo

 ... 181

Figure 78: The Detecting Movements in ST-Clusters (DMSTC)Algorithm 183

Figure 79: Swine flu clusters for the state of California .. 184

Figure 80: Cardinality change for selected swine flu clusters for the state of California 187

Figure 81: Area change for selected swine flu clusters for the state of California 187

Figure 82: Segmentation change for selected swine flu clusters for the state of California 187

Figure 83:Centroid movement of four different drought clusters across space with time. Two

clusters denoted as triangles are static drought clusters, i.e. they do not move across

space in time. The red dots and the blue dots respectively show the movement of the

other two clusters across space during their respective lifetimes as shown. 190

Figure 84: Comparison of TS-slices .. 192

www.manaraa.com

1

Chapter 1: Introduction

Data Mining is an important, fascinating, and a very active field in Computer Science that has

revolutionized many endeavors, and will play a central role in laying the foundation for next gen-

eration of major advances in many disciplines such as geography, biology, medicine, and social

and political science. It is a field drawing on algorithm design, system building, statistical analy-

sis, simulation, and visualization.

Within the vast domain of data mining, spatial and spatio-temporal data mining are im-

portant fields of research. Spatial data mining is the process of extracting potentially useful and

previously unknown information from spatial datasets. Explosive growth and widespread use of

spatial datasets by organizations such as the National Aeronautics and Space Administration,

Census Bureau, Department of Commerce, and National Institute of Health (NIH) have necessi-

tated the development of efficient and scalable algorithms to extract knowledge from these huge

datasets (Shekhar & Zhang, Spatial Data Mining: Accomplishments and Research Needs

(Keynote Speech), 2004). Spatial datasets are unique in that they store the spatial information, i.e.

longitude and latitude, the surrogate variables for space, of every object. The normal principles of

independence that are assumed in the general data mining algorithms no longer apply. On the

other hand, principles such as Tobler‘s First Law of Geography – ‗All things are related, but

nearby things are more related than distant things (Tobler W. , 1979),‘ and spatial autocorrelation

(Zhang, Huang, Shekhar, & Kumar, 2003) become increasingly important (Shekhar, Zhang,

Huang, & Vatsavai, 2003). As a result, the complexity of the techniques required to analyze the

spatial datasets increases significantly. Furthermore, the advances in this area are so rapid that

the 2010 University Consortium for Geographic Information Science (UCGIS) Summer Assem-

bly, a leading body in Geographic Information Science and Technology (GIS&T) was called to

address the changes happening in GIS&T theory, technology and applications. In the top nine

www.manaraa.com

2

research priorities identified by UCGIS spatiotemporal representation and modeling was ranked

first, and spatiotemporal dynamics was ranked fifth. Some other research priorities (unranked)

that were identified included Volunteered Geographic Information, spatial analysis and modeling,

geovisualization, and prediction (Prager, 2010).

Spatial clustering, one of the most fundamental tasks in spatial data mining, has been

steadily gaining importance over the past decade (Han, Kamber, & Tung, Spatial clustering

methods in data mining: A Survey, 2001). It is the process of the arranging spatial objects into

groups known as clusters such that the objects within the same group are similar to each other but

dissimilar from the objects in other groups. Several spatial clustering algorithms have been pro-

posed in the literature; a survey is presented in (Han, Kamber, & Tung, Spatial clustering

methods in data mining: A Survey, 2001). However, the focus of researchers so far has been on

point datasets with the idea that any spatial object can be represented as a point. Although this

approximation makes the problem more tractable, this approach does not work well for spatially

extended objects. This is because point representation of spatially extended objects such as poly-

gons results in significant loss of structural and topological information that is critical in many

applications (e.g. congressional redistricting and watershed analysis). The problem of polygonal

clustering has been overlooked in the past, and is the focus of our research.

In our research, we focus on clustering spatially extended objects that can be represented

as polygons. It is important to devise mechanisms for clustering polygons because most objects

in the geographic space are two dimensional and they are more accurately represented as two-

dimensional polygons than one-dimensional points. Moreover, many applications require that the

spatial objects be represented as polygons. The geographic space can be logically organized into

polygons that are either natural or man-made units, for example, watersheds, counties, congres-

sional districts, agro-eco zones, and natural resource districts. These as well as other domains can

benefit from polygonal clustering algorithms. The resultant clusters can be used for classifica-

www.manaraa.com

3

tion, prediction, scientific analysis, decision making, or for simply map formation and visualiza-

tion.

1.1 Applications

Most of the anthropogenic objects such as parks, administrative areas, market areas, buildings,

and vehicles all lend themselves to a polygonal representation (Robertson, Nelson, Boots, &

Wulder, 2007). Furthermore, the geographic space can be organized as polygons. For example,

there are naturally formed polygons such as lakes, watersheds, rivers basins, and aquifers, or hu-

man-defined polygons such as states, counties, and census tracts.

In the geospatial domain, a central problem is organizing the space into regions for easier

management and analysis. Often it becomes a problem of aggregating smaller regions into larger

ones. This is fundamentally a polygonal clustering problem. For example, congressional redi-

stricting is a problem that is revisited every 10 years in the United States. However until today,

there is no proper method to automate the process and evade the issue of gerrymandering com-

pletely. Other examples of zone formation are school districts, police precincts, and electricity

dispersion zones. Examples of other applications of polygonal clustering include, but are not li-

mited to, watershed analysis, drought analysis, crime mapping, and spatial epidemiology.

1.2 Problem Description

Many applications in the geospatial domain require organizing the space into clusters of polygons

that are spatially contiguous and compact. When polygons are represented as points, the cluster-

ing algorithms produce spatially disjoint clusters. This is because when a polygon is represented

as a point, spatial and topological information such as the extent of boundary shared with another

polygon is lost. Even in applications where spatial contiguity is not a factor, there is no appropri-

ate point-based representation of a polygon that is embedded inside another polygon.

www.manaraa.com

4

Structural complexity of the polygons and their distribution in space also induces addi-

tional challenges. For example, the size of the polygons in a dataset may be unbalanced, i.e. half

are small, and the other half much bigger. The question is then: should the small and big poly-

gons be treated equally? Another scenario may involve two or more polygons sharing one or

more spatial object, for example, two or more counties sharing the same river. How should the

relationship be defined among these polygons that share the same spatial object? Yet another

example of such an issue is when two polygons are divided by a linear spatial object, such as a

river or a mountain range. Does the presence of the linear spatial object decrease or increase the

similarity between the two polygons? Finally, while in general, point datasets may contain noise

or outliers, they are relatively uncommon in the polygon datasets. Therefore, most of the times,

all the polygons present in a dataset need to be accurately clustered.

Furthermore, the problem of district and zone formation is particularly a difficult problem

to solve. This problem, in the past, has been deemed as computationally too expensive to be au-

tomated (Altman, 2001). This problem and other regionalization problems can be formulated as

polygonal clustering where the clusters must be spatially contiguous and compact. Representing

polygons as points and applying the point-based clustering algorithms may result in clusters that

are spatially disjoint, or clusters that meander all across space.

Finally, the temporal domain is ever present in any real-life application. Everything

changes with time. Animals migrate from one place to another with changing weather condi-

tions; people move from under-developed to developed places in the world; with the increased

global warming, there are climatic shifts happening around the world (Ravelo, Andreasen, Lyle,

Olivarez Lyle, & Wara, 2004). As a result, polygons that define most of these things also do not

remain constant in space across time (Robertson, Nelson, Boots, & Wulder, 2007). Thus, it is

natural that the polygonal clusters would also change their shape and location across time. There-

fore, it is not only important to develop techniques to identify static spatial clusters, but also clus-

www.manaraa.com

5

ters that are dynamic in nature. Representing time as a first-class citizen in the spatio-temporal

clustering problem is an important challenge that has been a struggle in geospatial research. Most

of the past research performs spatial clustering at different snapshots in time and then compares

the resulting clusters (Kalnis, Mamoulis, & Bakiras, 2005). Performing true 3-dimensional clus-

tering in space and time is a challenge that needs to be addressed.

Thus the problem of polygonal clustering can be defined as: given a set of geospatial po-

lygons defined in both space and time, group the polygons into a set of clusters such that the po-

lygons within the same cluster are similar to each other with respect to their spatial and non-

spatial properties.

1.3 Proposed Approach

In this research we have addressed several fundamental problems in polygonal spatial clustering.

The basic principles used to solving these problems are:

1. Spatial Extent: Represent a polygon as a two dimensional entity with a set of vertices ra-

ther than only the centroid of the polygon in order to accurately represent the location of

a polygon. Using the centroid representation of the polygon may lead to inaccurate dis-

tance computation between two polygons.

2. Spatial Attributes: Integrate the spatial attributes and structure of polygons into the clus-

tering process. Spatial attributes include area, perimeter, minimum bounding rectangle,

ratio of the principal axes, shared boundary length, neighboring polygons, etc. Another

level of spatial attributes includes other spatial objects embedded within the polygons.

For example in a county, other spatial objects (e.g. lakes) may be present that can be

represented as polygons themselves.

3. Spatial Relationships: Take into consideration the binary relationships that may exist

within the polygonal datasets. For example, two polygons sharing a linear feature such as

www.manaraa.com

6

a river may exhibit similar properties, and thus be related to each other with respect to the

river.

4. Spatial Autocorrelation: Guide the clustering process according to the principles that re-

flect the nature of the geographic space, e.g. spatial autocorrelation, spatial heterogenei-

ty, and Tobler‘s First Law of Geography.

5. Density Connectivity: Extend the density-based connectivity concepts from points to po-

lygons in order to perform density-based polygonal clustering.

6. Spatial Constraints: Improve the clustering process further by the addition of different

types of user-defined constraints, e.g. hard or soft constraints, instance-level constraints

or cluster-level constraints (Davidson & Ravi, Towards efficient and improved

hierarchical clustering with instance and cluster level constraints, 2004).

7. Time as a First Class Citizen: Treat both space and time as equals in the clustering

process in order to bridge the gap between the spatial and temporal dimensions, and

detect dynamic clusters and their movement patterns across space and time.

1.4 Research Contributions

In this research, we have made four significant contributions to the state of the art in polygonal

clustering. They are briefly summarized below.

1. Dissimilarity of Geospatial Polygons: We have developed a polygonal dissimilarity function

(Joshi, Samal, & Soh, A Dissimilarity Function for Clustering Geospatial Polygons, 2009a),

(Joshi, Samal, & Soh, A Dissimilarity Function for Complex Spatial Polygons, Under

Review) that accurately computes the dissimilarity between two polygons by integrating both

non-spatial attributes and spatial structure and context of the polygons.

2. Density-Based Polygonal Clustering: We have developed a density-based clustering algo-

rithm for polygons known as P-DBSCAN (Joshi, Samal, & Soh, Density-Based Clustering of

Polygons, 2009b). P-DBSCAN extends DBSCAN (Ester, Kriegel, Sander, & Xu, 1996), the

www.manaraa.com

7

state-of-the-art density based clustering algorithm for point datasets to polygonal datasets.

We have further extended the algorithm to cluster polygons in the presence of obstacles (P-

DBSCAN+) (Joshi, Samal, & Soh, Polygonal Spatial clustering in the Presence of Obstacles ,

Under Preparation).

3. Polygonal Clustering with Constraints: We have developed a suite of constraint-based poly-

gonal spatial clustering (CPSC) algorithms (Joshi, Soh, & Samal, Redistricting Using

Heuristic-Based Polygonal Clustering, 2009c), (Joshi, Soh, & Samal, Redistricting using

Constrained Polygonal Clustering, Under Review) for clustering polygons under a given set

of user-defined constraints. These algorithms provide a systematic approach for incorporat-

ing both hard and soft constraints, and holistically integrating them in the clustering process.

4. Spatio-Temporal Polygonal Clustering: We have developed a spatio-temporal polygonal

clustering (STPC) algorithm (Joshi, Samal, & Soh, Detecting Spatio-Temporal Polygonal

Clusters Treating Space and Time as First Class Citizens, Under Review) that uniquely treats

both space and time as first-class citizens. Using this algorithm we are able to bridge the gap

between the spatial and temporal dimensions, and overcome the bottleneck of snapshot ap-

proaches. Furthermore, in order to detect the dynamic changes that a cluster goes through in

its lifetime, we have developed an algorithm known as Detecting Movements in Spatio-

Temporal Clusters (DMSTC) (Joshi, Samal, & Soh, Analysis of Movement Patterns in

Spatio-Temporal Polygonal Clusters, Under Preparation) that analyzes the movement patterns

in spatio-temporal polygonal clusters.

1.5 Dissertation Overview

The structure of this dissertation is as follows. Chapter 2 describes the details of the polygonal

dissimilarity function. We also present the results obtained by applying our dissimilarity function

on a watershed dataset and county dataset. Chapter 3 presents the density-based clustering algo-

rithm for polygons known as P-DBSCAN. We also show the application of P-DBSCAN on a

www.manaraa.com

8

county dataset in order to detect density-connected clusters of polygons. Chapter 4 details the

density-based clustering algorithm for polygons in the presence of obstacles known as P-

DBSCAN+. Followed by which we show the application of P-DBSCAN+ on a census tract data-

set in the presence of obstacles such as rail-road tracks and rivers. Chapter 5 describes the suite

of constraint-based clustering algorithms for polygons known as CPSC, CPSC* and CPSC*-PS.

In this chapter we show the results for the congressional redistricting and school district forma-

tion applications. Chapter 6 presents the spatio-temporal polygonal clustering (STPC) algorithm.

We show the results of the application of STPC for drought analysis, spatial epidemiology, and

crime mapping applications. Chapter 7 presents the DMSTC algorithm that analyses the move-

ment patterns of spatio-temporal clusters as they move from one time stamp to another. This

chapter also shows the results of the analysis of the movement patterns of drought clusters, flu

clusters, and crime clusters. Finally, in Chapter 8 we present a summary of our work, along with

directions for future research.

www.manaraa.com

9

Chapter 2: A Dissimilarity Function for Geospatial Polygons

2.1 Introduction

Explosive growth and widespread use of spatial datasets by organizations such as the space agen-

cies worldwide, the census bureau, and healthcare agencies have led to the need of developing

efficient and scalable algorithms to extract knowledge from these huge datasets (Shekhar &

Zhang, 2004). Spatial datasets are unique in that they store the spatial information in the form of

the longitude and latitude of every object. As a result, the complexity of the datasets increases.

Unlike transactional data, principles such as Tobler‘s first law of geography – ‗All things are re-

lated, but nearby things are more related than distant things (Tobler, 1979),‘ and spatial autocor-

relation play significant role (Zhang et al, 2003) within the spatial datasets. As a result, the nor-

mal principles of independence that are assumed in the machine learning algorithms are not ap-

plicable to the spatial datasets.

Spatial data can further be divided into three different categories – point spatial datasets,

linear spatial datasets, and polygonal spatial datasets. While points datasets are easily represented

using their latitude and longitude, linear and polygonal datasets are much more complicated in

nature (Pease note that the polygons referred to here are the same as regions (Cliff et al, 1975) or

tessellations in space.) For example, the length of boundary shared between two polygons—

which may be used to determine spatial proximity of the two polygons—is lost when polygons

are represented as points. Moreover, for a concave shaped polygon, the centroid of the polygon

may lie outside the boundary of the polygon. Thus, if one tries to spatially analyze polygons

simply by representing them as points (typically their centroids) the result may not be accurate,

and the underlying spatial structure is lost. Furthermore, when considering spatial polygons,

there may be other spatial objects that lie within the polygons or may be shared by two or more

polygons. For example, lakes, rivers, and even manmade structures such as highways lie within

www.manaraa.com

10

geospatial polygons such as counties and watersheds. There is no appropriate representation of

this type of information when using the current state-of-the-art in spatial analysis. For example,

if one were to perform watershed analysis – where watersheds are naturally formed polygons

within the river basins – based on their relationship with a set of rivers, say, cutting through the

watersheds, there is no current spatial analysis technique that would allow us to do so.

In this chapter we propose a new dissimilarity function called the Polygonal Dissimilarity

Function (PDF) that comprehensively integrates both the spatial and the non-spatial attributes of

a polygon to specifically consider the spatial structure and organization of the polygons. This is

based on our earlier work presented in (Joshi et al. 2009b). We hypothesize that, in order to accu-

rately represent polygons in the geospatial domain, the attributes of the polygons should accurate-

ly capture both its spatial structure (intrinsic to the polygon) and its spatial organization (extrinsic

to the polygon) along with the non-spatial attributes of the polygons. The spatial structure of a

polygon represented using a set of intrinsic attributes refers to the area covered by polygon, its

location, its shape, etc. By taking the intrinsic attributes of the polygon into account we can find

out, for example, the extent of the boundary shared by two polygons, the information as men-

tioned before that is lost by representing the polygon as a point. On the other hand, the spatial

organization of a polygon represented using a set of extrinsic attributes refers to the topological

relationship between the polygon and its neighboring polygons within the dataset as well as other

spatial objects present within a polygon itself. Measuring the extrinsic attributes of the polygons

would thus allow us to take into account for example the spatial distributedness of other spatial

objects present within the polygons, giving us another perspective on the similarity between po-

lygons. Using this representation of the polygons, we define PDF as a weighted function of the

distance between two polygons in the different attribute spaces. In other words, PDF is a combi-

nation of a number of distance functions each pertaining to a different class of attributes describ-

ing a polygon. Furthermore, the weights in the dissimilarity function allow the users to customize

www.manaraa.com

11

their use of PDF based on the significance of the attributes in their application domain. For ex-

ample, in order to find the similar lakes based on their topological relationship—such as ―adja-

cent to‖— with watersheds, one would assign a greater weight to the spatial distance that meas-

ures topological relationships. On the other hand, in order to discover the lakes high in nitrogen

content, a higher weight must be assigned to the non-spatial attributes. In Section 2.3 we describe

the distance functions for the underlying attributes of the polygons along with the guidelines for

combining them effectively.

Our novel dissimilarity function can be used in a variety of problems where distance or

similarity plays a central role. Examples of such application areas include – clustering of geospa-

tial polygons, training of an instance-based learning system, prediction and trend analysis, etc.

Clustering, a common data mining task is a prime application for a dissimilarity function since it

is based on separation of dissimilar objects, and grouping of similar objects. Other applications,

such as region growing in which objects are ranked based on degree of similarity to their neigh-

boring polygon, require a function that orders polygons in increasing similarity. Most distance

functions used in polygonal clustering or regionalization fail to comprehensively treat all the spa-

tial attributes (see Section 2.2 for an overview of the most commonly used distance functions for

polygons) due to the inadequate representation of structural (intrinsic) and topological (extrinsic)

information contained in the polygons. This leads to inaccuracy in the computed results. It is our

hypothesis that the use of PDF will lead to more accurate comparison of polygons.

In order to evaluate our dissimilarity function we first compare and contrast it with other

distance functions proposed in literature that also use both spatial and non-spatial attributes. In

particular, we compare our algorithms to the distance functions proposed by Webster and Bur-

rough (1972), Cliff et al. (1975), and Perruchet (1983). These distance functions have been de-

scribed in Section 2.2, and the comparative analysis has been presented in Section 2.4. Next, we

specifically investigate the effectiveness of our dissimilarity function in spatial clustering since

www.manaraa.com

12

distance based functions play a central role in this application. We have applied our dissimilarity

function to the k-medoids clustering algorithm to cluster geospatial regions represented as poly-

gons in two different domains with diverse characteristics – namely, environmental analysis using

watersheds and political applications using counties. Our results show that PDF outperforms oth-

er distance functions in ranking the similarity between polygons, and results in the maximum

range between the pair-wise distances computed. Furthermore, our results for the clustering ap-

plication show that with the use of the intrinsic and extrinsic spatial attributes of the polygons

along with the non-spatial attributes results in more cohesive clusters.

Finally, we use the term ―dissimilarity‖ instead of ―distance‖ because our dissimilarity

function does not satisfy the symmetry and triangular inequality properties of distance metric

(Arkhangel'skii & Pontryagin, 1990).

2.2 Related Work

In this section we present an overview of the various distance functions proposed in literature for

measuring the distance between two polygons along with the problems associated with their use.

Polygons in general can be concave or convex, small or large, elongated or compact. Further-

more, completely disjoint polygons can have overlapping bounding boxes; adjacent polygons can

share a single point, a segment on the boundary or even multiple segments. Based on these prop-

erties of the polygons the following distance functions have been proposed.

Centroid Distance. One way to approximate polygon objects is to represent each object

by a representative point, such as the centroid of each object, and then find the distance between

the centroids of the polygons. However, this approach is generally not effective since the objects

may have very different sizes and shapes. For instance, a rectangular building may have a size of

500 square meters, whereas a lake may have a size of 300,000 square meters with irregular elon-

gated shape. Simply representing each of these objects by its centroid, or any single point, does

not take into the account the extents of the polygons. Another problem with this approach is that

www.manaraa.com

13

the centroid may not be inside the polygon (e.g., for some concave objects) and may indeed be

inside another object.

Minimum Bounding Rectangle Distance. There is a large body of work in shape analy-

sis (e.g., Gardoll 2000; Shapiro & Stockman, 2001). For example, the minimum bounding rec-

tangle (MBR) of a polygon can be used as a first-order approximation of the shape and orienta-

tion of the polygon: it is the smallest rectangle that encloses an object. Distance of two polygons

can be measured by finding the distance between the centers of their respective MBRs. However,

many of the same problems described for centroid-based distances remain. For example, the cen-

ter of the MBR of a polygon may not fall within the polygon, or the MBRs of two polygons may

overlap.

Separation distance. The distance between a point P and a line L is defined by the per-

pendicular distance, between the point and the line, i.e., min{d(P,Q)|Q is a point on L}. Thus,

given two polygons A and B, we can define the distance between these two polygons to be the

minimum distance between any pair of points in A and B, i.e., min{d(P,Q)|P,Q are points in A,B

respectively}. This distance is called the separation distance (e.g., distance between polygons P1

and P3 as shown in Figure 1 and is exactly the same as the minimum distance between any pair of

points on the boundaries of A and B (Dobkin & Kirkpatrick, 1985).

However, if two polygons intersect or share boundaries or even a point, their separation

distance is zero. This definition of distance is quite unsatisfactory for geospatial applications, e.g.,

the distances between P1 and P2 and between P2 and P3 , as shown in Figure 1. The separation

distance between two adjacent polygons will always be zero and is an inappropriate measure

since all polygons will have shared boundaries with their neighbors. The transitive relationship in

terms of separation distance does not hold: in Figure 1, for example, the separation distance be-

tween P1 and P3 is non-zero, even though each has a zero separation distance with P2.

www.manaraa.com

14

Figure 1: Separation distance where the transitive relation does not hold.

Min-Max Distance. Another way to measure the distance between polygons is to find

the minimum or maximum distance between each pair of vertices of the polygons. However, this

method either overestimates or underestimates the true distance between two polygons as shown

in Figure 2(a). It shows the separation distance (a), the minimum distance between vertices (b),

the maximum distance between vertices (c), and the distance between the centroids (d). It is clear

that both b and c do not match the intuitive notion of the distance between the two polygons. If

we only consider the minimum or the maximum distance between vertices, we overlook the shape

of the polygons as shown in Figure 2(b), where the shortest and longest distances between any

pair of vertices are shown in red and blue, respectively. Clearly, these distances are independent

of the shape of the polygons, i.e. many polygons with different shapes can have the same distance

as long as we maintain the two extreme (minimum or maximum) points in the two polygons.

Hence these are inappropriate as distance measures.

(a) (b)

Figure 2: Minimum and maximum distance between vertices.

www.manaraa.com

15

Hausdorff distance. The Hausdorff distance between two sets of points (Rote, 1991) is

defined as the maximum distance of points in one set to the nearest point in the other set. Formal-

ly, the Hausdorff distance from set A to set B is defined as:

),(minmax),(badBAh
BbAa

where a and b are points of sets A and B, respectively, and d(a, b) is any distance metric

between the two points a and b; for simplicity, we can take d(a, b) as the Euclidian distance be-

tween a and b . If the boundaries of the polygons Pi and Pj are represented by two sets of points

A and B, respectively, we can use this as a distance measure between two polygons.

),(),,(max, ABhBAhPPD jih

Figure 3 presents a comparison between the Centroid distance and Hausdorff distance of

two polygons. For convex polygons the Hausdorff distance, defined on the set of vertices of po-

lygons, usually gives as good an estimate of distance as the Centroid distance. However, using the

centroids to measure the distance between two polygons may not give us the ―true‖ distance for

concave polygons. As shown in Figure 3, the Centroid distance Dc may underestimate or overes-

timate the exact distance when the centroid of a concave polygon falls outside the polygon. The

Hausdorff distance, Dh, defined on the two sets of vertices of polygons, gives a more accurate

measurement.

Figure 3: Comparison of Hausdorff distance with centroid distance.

www.manaraa.com

16

Fréchet Distance. In order to measure the distance between polygons based on their

shape, Fréchet distance (Buchin, Buchin, & Wenk, 2006) is considered to be more appropriate

than Hausdorff distance (Rote, 1991). An intuitive definition of the Fréchet distance is to im-

agine that a dog and its handler are walking on their respective polygon boundaries. Both can

control their speed but can only go forward. The Fréchet distance of these two polygon bounda-

ries is the minimal length of any leash necessary for the dog and the handler to move from the

starting points of the two curves to their respective endpoints. It is formally defined below:

Let f, g be parameterizations of curves or polygons, i.e., continuous functions

kdkRgf dk },2,1{,]1,0[:,

Then their Fréchet distance (DF) is

))(()(maxinf),(
]1,0[]1,0[:

tgtfgfD kk tF

where the re-parameterization σ ranges over all orientation preserving homeomorphisms.

It is important to note that Fréchet distance is used only for shape matching. It does not

measure the geographic distance between two polygons in the geospatial applications for in-

stance. For such purposes Hausdorff distance is more appropriate as shown in Figure 3.

In addition to the distance functions defined above, several ways to combine geographi-

cal distances and non-geographical dissimilarities into a single pair-wise similarity value have

been proposed in literature. Webster and Burrough (1972), Cliff et al. (1975), and Perruchet

(1983) proposed different multiplicative and additive forms to combine such elements. These are

defined below:

WB Distance. Webster and Burrough (1972) proposed to compute the dissimilarity be-

tween pairs of polygons using the ‗Canberra metric‘. The Canberra metric between the i
th
 and the

j
th
 sites is computed as follows:

www.manaraa.com

17

p
gg

gg
D

p

k jkik

jkik

ij /
1

Where
ikg and

jkg are the values of the k
th
 property for the i

th
 and j

th
 polygons respective-

ly and p is the number of properties. They further proposed to add the geographic distance be-

tween the sites to the Canberra metric coefficient as follows:

w

w
d

d
D

D

ij

ij

WB

1

max

Where
ijD is the Canberra metric between polygons i and j,

ijd is the geographic distance

between the polygons i and j,
maxd is the distance between the most distant pair of polygons, and

w is a weighting factor.

CXY Distance. Cliff et al. (1975) propose a combined distance metric)(cliffD to measure

the distance between two polygons i and j as:

ijijcliff tdD)1(

where
ijd is some distance metric that measures the spatial separation between the i

th
 and

j
th
 regions,

ijt is the distance metric that measures the distance between the non-spatial attributes

of the two regions, and represents a weighing constant)10(. 0 , represents a purely

non-spatial strategy, and 1 represents a purely spatial strategy. 33.0 and 66.0 signify a

mixed strategy which has been shown by the authors to yield intermediate results with an average

efficiency about twenty percent greater than that of the extremes.

PXY Distance. Perruchet (1983) defines the aggregation index of dissimilarity,
PD , be-

tween two polygons i and j as follows:

)),(),,((),(jidjifjiDP

www.manaraa.com

18

where xyyxf),(,),(jid is the geographic distance between the two polygons and is

computed using the Euclidean distance function, and),(ji is the aggregation index defined as

the dissimilarity between the polygons based on their non-spatial attributes. An example of),(ji

is given as:

2

),(ji

ji

ji
vvji

where
i is the mass of i, and iv is the representation of i in the descriptor space.

In summary, all the distance functions defined above focus on one or two aspects (dis-

tance and/or shape) of polygons. Our representation of a polygon includes their structural and

organizational properties which are fundamentally different, and thus need to be treated different-

ly. These properties are not incorporated in any of the functions proposed in literature in a com-

prehensive manner. This serves as the motivation of our work to define a comprehensive dissimi-

larity function that effectively unifies the distance functions for each type of attribute of a poly-

gon.

2.3 Dissimilarity Function for Geospatial Polygons

Consider a set of polygons },...,,{ 21 nPPPP where each polygon
iP is defined by a set of spatial

and non-spatial attributes.

The non-spatial attributes of a polygon include all the attributes of the polygon that are

independent of the spatial location of the polygon. Examples of non-spatial attributes are – popu-

lation, average income, number of hospitals, number of major cities, etc.

The spatial attributes of a polygon can be further divided into two categories: 1) intrinsic

and 2) extrinsic. The intrinsic attributes describe the geometric properties of the polygon without

any contextual information in a domain independent way. Examples of intrinsic attributes include

www.manaraa.com

19

location, shape, area, aspect ratio, etc. The location of the polygon is represented as a set of ver-

tices, specified in some spatial coordinate frame.

The extrinsic attributes encompass the various spatial objects that may exist within a po-

lygon, or may be shared by two or more polygons, which may however be defined independent of

the polygon. Thus, the extrinsic attributes represent the elements that are either embedded into or

intersect with the polygon. These elements exist independently of the polygon, but share the

geographic space with it in some fashion. There can be three classes of spatial objects: point, li-

near and areal. Examples of point spatial objects include buildings, shopping complexes, etc. Ex-

amples of linear spatial objects include rivers, roads, and mountain ranges. Examples of areal ob-

jects include reservoirs, crop areas, forests, and large lakes.

Given two polygons,
iP and

jP , the Polygonal Dissimilarity Function (PDF) that meas-

ures the distance between two polygons in all the attribute spaces described above is defined as

follows:

)),(),,((),(jisjinsjiPDF PPdPPdfPPD (1)

where nsd is a function that computes the distance between two polygons based on the

non-spatial attributes – see Equation 3, and sd is a function that computes the distance based on

the spatial attributes – see Equation 4.

The function f in Equation 1 can be any non-spatial function that combines the two dis-

tances. We use a weighted sum that can easily adjust the contribution (i.e., the weight) of both

the distances.

),(),(),(jissjinsnsjiPDF PPdwPPdwPPD (2)

where 1 sns ww .

www.manaraa.com

20

The weights nsw and sw are domain dependent, i.e. they should be tuned for the applica-

tions using experiential or expert knowledge. Therefore, we cannot explicitly assign them any

fixed values. These weights play an important role in defining the contribution of the different

types of attributes. For example in a clustering application of our dissimilarity function, if we are

interested in clustering regions based on the density of population, and do not care that the re-

gions should be spatially contiguous, a higher weight may be assigned to the non-spatial

attributes. On the other hand, if we want the clusters to be spatially contiguous, a higher weight

must be assigned to the spatial attributes.

2.3.1 Distance between Non-Spatial Attributes

The distance between the polygons in the non-spatial attribute space)(nsd , can be defined using

any distance measure such as the Euclidean distance function or the Manhattan distance function.

We use the standard Euclidean distance as our distance measure as shown in Equation 3.

m

k

jkikjins ggPPd
1

2)(),((3)

where
ikg and

jkg represent the k
th
 non-spatial attribute of polygons

iP and
jP respec-

tively, and m is the total number of non-spatial attributes. Please note that all the non-spatial

attributes must be represented as ordered numerical attributes so that they can be integrated to-

gether. Furthermore, all the attributes must be normalized before the computation of the distance.

The normalization can be performed by dividing all the values in the dataset by the largest value

in the dataset (Han & Kamber, 2006). We assign an equal weight to all the non-spatial attributes.

However, if desired, different weights may be assigned to the various non-spatial attributes. In

this case, the equation for the distance function for non-spatial attributes will be as follows:

m

k

jkikkjins ggwPPd
1

2)(),((3-1)

www.manaraa.com

21

2.3.2 Distance between Spatial Attributes

The distance between the polygons based on their spatial attributes (
sd) is defined as a function

of the distance between their intrinsic spatial attributes (
insd) and their extrinsic spatial attributes (

exsd) as reflected in Equation 4. The function
insd is defined in Equation 6, and the function

exsd is

defined in Equation 15.

),(),(),(jiexsexsjiinsinsjis PPdwPPdwPPd (4)

where 1 exsins ww .

2.3.2.1 Distance between Intrinsic Attributes

Among the intrinsic attributes of polygons, location is the most important. The location of a po-

lygon is defined as a vector of its vertices. Intuitively, we expect the distance between two poly-

gons with shared boundaries to be shorter than the distance between two polygons that do not

have a common border. This is based on the assumption that two regions that share a boundary

are closer than two regions—with everything else being equal—that do not, an assumption that

has been used in domains dealing with spatial data such as image processing and structural organ-

ization (Jiao & Liu, 2008). The importance of geographic distance and the shared boundary

length between two regions in various political applications have been demonstrated in (Furlong

& Gleditsch, 2003).

The Hausdorff distance function as defined in Section 2.1 is a suitable distance function

to measure the distance between the vertices of two polygons as it neither under-estimates nor

over-estimates the distance between two polygons. However, the standard Hausdorff distance is

defined on the set of points and does not incorporate any shared boundary. In order to incorporate

this, we define a new distance measure, called boundary adjusted Hausdorff distance that is in-

versely proportional to the length of the shared boundary between two polygons iP and
jP as

follows:

www.manaraa.com

22

jih

ji

ij

jihs PPd
ss

s
PPd ,

2
1),(

 (5)

where hd is the original standard Hausdorff distance, is and
js are the perimeter lengths

of polygons iP and jP , respectively, and
ijs is the length of their shared boundary. This dis-

tance, hsd , is smaller than the standard Hausdorff distance when two polygons have shared

boundary, and becomes the standard Hausdorff distance when two polygons have no shared

boundary, i.e., when
ijs = 0. We use twice the shared distance in the definition to balance the

effect of the denominator.

Other than location, for the other intrinsic attributes, we compute the Euclidean distance

between the individual attributes of the polygons in order to measure the distance between the

polygons. Finally, the distance between polygons
iP and

jP based on their intrinsic attributes

 insd is defined as:

r

k

jkikstjihshsjiins ttwPPdwPPd
1

2)(,, (6)

where ikt and
jkt represent the k

th
 structural attribute of polygons

iP and
jP respectively,

and r is the total number of structural attributes, hsw represents the weight assigned to the mod-

ified Hausdorff distance function,
stw is the weight assigned to the remaining intrinsic spatial

attributes, and 1 sths ww .

2.3.2.2 Distance between Extrinsic Attributes

Extrinsic attributes incorporate the spatial objects present within the polygons or shared by two or

more polygons. Given below is a framework that is used for defining the distance between two

polygons based on their extrinsic attributes. The distance is based on the following properties of

www.manaraa.com

23

the various spatial objects with respect to the polygon – 1) density, 2) extent (the area covered by

the object within the polygon), 3) spatial distribution, 4) topology and 5) direction.

The density, extent and distribution of a spatial object within a polygon are indicative of

the underlying forces (e.g. climate or other biological or geophysical or chemical) which influ-

ence the polygon. In the geospatial domain for example, the presence of clusters of oak trees in

two polygons is indicative of similar soil and/or climate regime, and therefore both the polygons

are likely to be more similar to each other. Therefore two polygons with similar object density

and distribution are more likely to be similar. The topology of spatial objects, on the other hand,

especially of linear spatial objects, is important as it captures the binary relationship between the

polygons with respect to other spatial objects. For example, a physical barrier between the poly-

gons (e.g., a mountain range) can potentially increase the physical distance between the polygons,

and hence discourage the polygons to be clustered together.

Due the wide differences in their construction, e.g. an areal object extends over a large

area, whereas a point object is simply a single point within the polygon, not all the different as-

pects mentioned above are applicable to every type of spatial object. Table 1 lists the different

types of characteristics applicable to the different types of spatial objects.

In Table 1, n is the number of times the spatial object occurs within the polygon, A is

the total area of the polygon,
ia is the total extent of the areal object i within the polygon, and

iz is the test statistic obtained from the Mean Nearest Neighbor test for complete spatial random-

ness (CSR) (Donnelly 1978), and N/A stands for not applicable. Next, we define the functions

that are used to find the distance between two polygons on the basis of the above mentioned

properties of the spatial objects present within the polygons.

www.manaraa.com

24

Table 1: Different characteristics of spatial object attributes

 Density Extent Distribution Topology Direction

Linear Object
A

n
dn N/A iz Defined below Defined below

Areal Object
A

n
dn

A

a
e i

iz Defined below Defined below

Point Object
A

n
dn N/A iz N/A N/A

Density and Extent. Density is the number of times an object occurs within a polygon

divided by the area of the polygon. Extent is the total area covered by the object within the poly-

gon. We measure the distance between two polygons on the basis of the density of the objects

using Equation 7, and on the basis of extent using Equation 8.

),max(ji

ji

density
dndn

dndn
d

 (7)

where idn is the density of point object m in polygon iP ,
jdn is the density of point ob-

ject m in polygon
jP .

),max(ji

ji

extent
ee

ee
d

 (8)

where ie is the total extent of an areal object within polygon iP ,
je is the total extent of

the areal object within polygon
jP .

Distribution. The spatial distribution of an object is measured using the Mean Nearest

Neighbor test for complete spatial randomness (CSR) (Donnelly 1978). The statistic produced as

the output of this test is a fair indicator of the presence of aggregation, regularity or randomness

of events located within a polygon. This information about the polygons helps us in identifying

the polygons that have a similar underlying structure.

www.manaraa.com

25

Please note that the spatial distribution test is only applicable for point data set. There-

fore, in order to measure the distribution of areal objects, some methodology needs to be followed

to represent areal objects as a set of points. While more complicated methods can be devised for

this purpose, as the areal objects present within the polygons are an order smaller in magnitude,

for simplification purposes we represent each areal object by its centroid. To measure the distri-

bution of linear objects, we take a fixed number of points from each linear object, and use these

points for the spatial randomness test. We measure the distance between two polygons on the ba-

sis of the distribution of the spatial objects using equation 9.

),max(ji

ji

ondistributi
zz

zz
d

 (9)

where iz is the distribution of the point object m in polygon iP , and
jz is the distribution

of the point object m in polygon
jP .

Topology. Relationships between a pair of spatial objects (points, lines, and regions) can

be characterized as topological relations that describe how two such objects interact in a 2D

space. The 4-intersection model, and the 9-intersection model (Egenhofer & Franzosa, 1994) de-

scribe an object as its interior, boundary, and exterior. The relationship between two objects is

then based on the intersection of their interior, exterior or boundary. The topological relationship

between two objects helps us in computing the distance function in between the two objects – two

objects with similar topology are more likely to be similar than two objects with different topolo-

gy. Here we provide an extension of the framework proposed by Egenhofer and his colleagues

(Egenhofer & Franzosa, 1994), (Egenhofer & Mark, 1995), (Egenhofer, Clementini, & Felice,

1994) so that the topological relationship between two spatial objects can be defined with refer-

ence to a third spatial object. The topology of a polygon with respect to the linear objects is de-

fined as follows.

www.manaraa.com

26

A polygon (A) can be divided into three segments – boundary (A), interior (A), and

exterior (A). A linear feature)(l may intersect the boundary, the interior, or the exterior of the

polygon. Furthermore, the polygons may lie either on the same side of the linear feature, or they

may be on opposite sides of the linear feature. Table 2 illustrates the different scenarios that may

arise and define the topological relationships between the two polygons based on a linear feature.

These scenarios are also demonstrated in Figure 4. Once the relationship between two polygons

with respect to a linear feature is determined, the distance between the two polygons is computed

on the basis of the following two rules: 1) If the linear feature intersects the interior of both the

polygons, then the distance between them is the smallest. 2) If the linear feature intersects only

the exterior of both the polygons, then the distance is the largest.

Table 2: Different possible scenarios based on topological relationship of a linear feature (l) with two polygons (A

and B)

 A A
A B B

B
Figure

Scenario 1 l
X X Figure 4(a) & 4(b)

Scenario 2 l
X X Figure 4(c)

Scenario 3 l
X X Figure 4(d) & 4(e)

Scenario 4 l
 X X Figure 4(c)

Scenario 5 l
 X X Figure 4(f)

Scenario 6 l
 X X Figure 4(g)

Scenario 7 l
 X X Figure 4(d) & 4(e)

Scenario 8 l
 X X Figure 4(g)

Scenario 9 l
 X X Figure 4(h) & 4(i)

Figure 4: Topological relationship between two polygons based on a linear feature – linear feature may intersect

the interior, exterior or the boundary of a polygon.

www.manaraa.com

27

We generalize the distance function between a polygon and the linear feature based on

the topological relationship as follows.

)(),(

)(

)(

,

exteriorlPiflPf

boundarylPif

interiorlPif

lPd

ii

i

i

i

 (10)

where
iP is any polygon, and l is any linear feature, 10 , and),(lPf i

 =

Nearest distance of
iP to l . Here is defined as the constant minimum distance that any poly-

gon will have to a linear feature that intersects its interior and is defined as the constant dis-

tance that any polygon will have to a linear feature that intersects its boundary.

The topology of a polygon with respect to an areal object will follow the same design as

presented for the linear object. The scenarios illustrated in Table 2 and Figure 5 can be extended

for areal objects by replacing the linear feature with an areal object. For example, if we take into

consideration underground aquifers which are shared by two watersheds, then the areal object

(underground aquifers) intersects the interior of both the polygons iP and jP (the two water-

sheds). The distance, based on the topology of the polygon with respect to the areal object, be-

tween the areal object iP will be equal to and the distance of polygon jP to the areal object

will also be . Similarly, the rest of the cases can be extended from the linear objects to the areal

spatial objects.

Direction. The linear and areal spatial objects may also impose directional constraints on

the polygons, i.e. the polygons may be on the same side of the linear feature, or on opposite sides.

Furthermore, a linear or an areal feature present between two polygons may increase or decrease

the distance between the polygons. Based on these two factors, the distance between two poly-

gons iP and jP based on the linear feature l, is given by the following function:

 lPPoppslPPoppglPPd jijiji ,,,,|, (11)

www.manaraa.com

28

where lPPoppg ji ,, is 1 if the linear feature l is defined to be opposing (i.e. the pres-

ence of the linear feature makes the polygons dissimilar), and 0 otherwise; is defined as a con-

stant that ensures that the linear feature which is opposing in nature increases the distance be-

tween two polygons to an extent so that they are not categorized as similar polygons; and

 lPPopps ji ,, is an indicator of the location of the polygons with respect to the linear feature.

It has a value of 1 if the polygons are on the opposite sides of the linear feature, or 0 if the poly-

gons are on the same side.

It should be noted that these values are also domain dependent. If the domain is such

where the polygons are considered to be closer to each other if they are on opposite sides of the

linear feature rather than on the same side, then the values defined for lPPopps ji ,, can be

reversed. This same argument also applies to lPPoppg ji ,, . Similarly, we can apply the above

equation for an areal object when it is shared by two polygons.

Due to the difference in the characteristics of the three types of spatial objects, we treat

them separately, and define three different functions, d , d and d to compute the distance for

point, linear, and areal objects defined in Equations 12, 13 and 14 respectively.

The distance based on spatial point objects is:

k

m

densityji dd
k

PPd
1

ondistributi)(
1

),(
 (12)

where k is the total number of different point objects present within both polygons iP and
jP ,

The distance based on spatial linear objects is:

l

m

jijiondistributidensityji mPPdmPdmPddd
l

PPd
0

)])|,(1[)],(),([(
1

),(
 (13)

where l is the total number of different linear objects present within both polygons iP and
jP ,

Note: There may exist a scenario where the linear feature m is exterior to both the polygons, and

www.manaraa.com

29

the nearest distance between m and both the polygons is fairly large. In this case, we propose to

not include this linear feature while computing the distance between the two polygons based on

the set of the linear features.

The distance based on spatial areal objects is:

a

m

jijiextentondistributidensityji mPPdmPdmPdddd
a

PPd
1

)]))|,(1[)],(),([((
1

),(
 (14)

where a is the total number of different types of areal objects within polygons iP and jP , is the

extent of the areal.

Finally, we compute a weighted sum of the above three distances (d ,
d and d) to

derive the overall distance between two polygons iP and jP based on the organizational

attributes as follows:

),(),(),(, jijijijiexs PPdwPPdwPPdwPPd (15)

where www ,, , are the weights associated with the three spatial object types and

1 www . These weights provide flexibility for the domain expert to emphasize any set

of the spatial object features.

2.4 Experimental Analysis

In order to evaluate our polygonal dissimilarity function, we first compare and contrast it with

other distance functions proposed in literature that also use both spatial and non-spatial attributes.

In particular, we compare our algorithms to the distance functions proposed by Webster and Bur-

rough (1972), Cliff et al. (1975), and Perruchet (1983). For this study we have made use of a

subset of the census block groups from the city of Lincoln, NE along with the number of liquor

licenses assigned to each census block group. The goal is to study the differences in the pair-wise

distances computed for the polygons (census block groups) using the various distance functions.

www.manaraa.com

30

Next, we specifically investigate the effectiveness of our dissimilarity function in spatial

clustering since distance based functions play a central role in this application. We have applied

our dissimilarity function to the k-medoids clustering algorithm to cluster geospatial regions

represented as polygons in two different domains with diverse characteristics. We first apply our

dissimilarity function to the hydrology domain where we examine the formation of clusters of

watersheds. In hydrology watersheds are polygons that serve as the basic unit for analysis. For

example, watersheds are often clustered together to perform frequency analysis of floods, or de-

termine regional trends (Rao and Srinivas 2005). In a second experiment, we form clusters of

counties that are often used for the organization of higher level political or management districts.

In contrast to watersheds which represent natural units of area (polygons) with no defined geome-

tric shape, counties are man-made polygons that have more regular geometric shape and spatial

relationships.

2.4.1 Comparative Analysis

In this section we compare the performance of our algorithm with three distance functions that

make use of both the spatial and non-spatial attributes, namely, the WB Distance, the CXY Dis-

tance and PXY Distance. These are described in Section 2.2. We use a set of six polygons which

are census blocks in the city of Lincoln, NE (USA). For non-spatial attribute, we use the locations

of liquor licenses within the census blocks. The census blocks and the sites for liquor licenses are

shown in Figure 5.

The WB distance function is computed using – 1) the Canberra Metric on the number of

liquor licenses, 2) the Euclidean distance between the centroids of the polygons, and 3) 66.0w .

The CXY distance is computed by: 1) taking the normalized Euclidean distance between the cen-

troids of the polygons as the spatial distance function, 2) the normalized Euclidean distance be-

tween the number of liquor licenses, and 3) 66.0 . The PXY distance function is computed as

the product of the spatial distance between the centroids of the polygons and the non-spatial dis-

www.manaraa.com

31

tance using the metric defined in Section 2.2 (Perruchet 1983). We further compute a revised ver-

sion of the PXY distance function where we force the mass of any attribute being considered to

be at least 0.01. The results of this version of PXY distance are listed in Table under PXY‘.

Figure 5: A set of census blocks in Lincoln, NE and the locations of the sites for liquor licenses.

Finally, we compute our proposed PDF using the – 1) non-spatial distance function computed as

the normalized Euclidean distance between the number of liquor licenses, 2) intrinsic spatial dis-

tance function computed using our modified Hausdorff distance function, and 3) extrinsic spatial

distance function computed using the density and distribution of the liquor license locations with-

in each polygon. Further, the spatial attributes are assigned an overall weight of 0.66, and non-

spatial attributes are assigned a weight of 0.34. Within the spatial attributes, intrinsic spatial

attributes are assigned a weight of 0.5, and extrinsic spatial attributes are assigned a weight of 0.5.

The number of liquor licenses within each block (NoLL1 and NoLL2) and the distances between

each pair of polygons (P1 and P2) using the aforementioned functions for the census blocks

shown in Figure 5 are presented in Table 3.

Observing the results obtained, we find that PXY distance function fails to compute the

distance between two polygons when the mass of an attribute of either of the two polygons is 0.

Moreover, it favors small attribute values, and heavily penalizes the attributes with large values.

www.manaraa.com

32

This can be seen in the low distance computed for polygons with fewer liquor licenses, and a very

large distance computed for the polygons with more liquor licenses.

Table 3: Statistics and the distances between polygons using different distance functions (WB Distance, CXY Dis-

tance, PXY Distance, PXY‘ Distance and PDF).

P1 P2 NoLL1 NoLL2 WB CXY PXY PXY’ PDF

0 1 8 0 2.252 0.932 0.000 0.572 1.202

0 2 8 0 2.224 0.904 0.000 0.544 1.207

0 3 8 5 1.551 0.738 27.692 27.692 0.807

0 4 8 4 1.320 0.440 21.134 21.134 0.446

0 5 8 13 1.302 0.485 75.839 75.839 0.646

1 2 0 0 0.831 0.171 0.000 0.000 0.061

1 3 0 5 1.993 0.673 0.000 0.125 1.365

1 4 0 4 1.928 0.608 0.000 0.065 0.896

1 5 0 13 2.063 0.743 0.000 1.031 1.217

2 3 0 5 1.832 0.512 0.000 0.065 1.286

2 4 0 4 1.949 0.629 0.000 0.070 0.937

2 5 0 13 1.927 0.607 0.000 0.683 1.133

3 4 5 4 1.209 0.476 1.476 1.476 0.582

3 5 5 13 1.384 0.431 97.957 97.957 0.864

4 5 4 13 1.497 0.488 115.444 115.444 0.844

Comparison based on Range. Next we compared the results obtained using the WB and

CXY distance functions with PDF. The range of the pair-wise distance computed by the WB dis-

tance function is 0.63, that of the CXY distance function is 0.82, and that of PDF is 0.95. The low

range of the WB distance function will make it difficult to implement this distance function

where polygons need to be grouped based on pair-wise similarity. The CXY distance function

which has the same structure PDF improves upon the range of distance values, however, PDF

offers the best range of pair-wise distances between polygons among these distance functions.

This makes it more suitable for clustering type applications.

Comparison based on Ordering. If we look at the ordering of the pair-wise distances

computed using the three distance functions we find that while they all agree on the pair of poly-

gons that are most similar to each other (Polygons 1 and 2 – Rank 1), they do not agree on the

pair that are most dissimilar. The complete ranking of pair-wise distances between the polygons

is presented in Table 4. In this case, the WB distance function is more bent towards the differ-

ence in the non-spatial attributes and as a result Polygons 3 and 4 get assigned a higher rank

www.manaraa.com

33

(Rank 2 – meaning they are more similar to each other) as compared to the CXY distance func-

tion which assigns this pair a lower rank (Rank 4) because the spatial distance between them is

greater. On the other hand, as PDF is more rounded, using more spatial and non-spatial attributes

it assigns this pair a more appropriate rank (Rank 3) as these polygons are very similar in their

non-spatial attributes, and their geographic distance is also not as big as between some other po-

lygons.

Table 4: Ranking of pair-wise distances between polygons

P1 P2 WB Rank CXY Rank PDF Rank WB - CXY WB - PDF CXY - PDF

1 2 1 1 1 0 0 0

3 4 2 4 3 2 1 1

0 5 3 5 4 2 1 1

0 4 4 3 2 1 2 1

3 5 5 2 7 3 2 5

4 5 6 6 6 0 0 0

0 3 7 12 5 5 2 7

2 3 8 7 14 1 6 7

2 5 9 8 10 1 1 2

1 4 10 9 8 1 2 1

2 4 11 10 9 1 2 1

1 3 12 11 15 1 3 4

1 5 13 13 13 0 0 0

0 2 14 14 12 0 2 2

0 1 15 15 11 0 4 4

Sum: 18 28 36

Average: 1.2 1.87 2.4

Further, while the WB and CXY distance functions agree on the pair of polygons that are

furthest apart (Polygons 0 and 1), PDF assigns this pair a slightly higher rank, and categorizes the

pair of polygons 1 and 3 as the furthest apart. This is because the attributes of spatial distribution

and spatial density also play an important role. Because of slight clustering within the distribu-

tion of liquor licenses in polygon 3, the extrinsic spatial distance between polygons 1 and 3 and

polygons 1 and 2 is greater than the extrinsic spatial distance between polygons 0 and 1 and poly-

www.manaraa.com

34

gons 0 and 2. It is due to this factor that some large shifts in ranking occur within PDF as com-

pared to the WB and CXY distance functions. If we remove the pair of polygons which cause the

biggest shifts, we obtain the new ranking shown in Table 5. From Table 5 we can see that the av-

erage shift has dropped considerably for both the WB distance function versus PDF, and for the

CXY distance function versus PDF. This suggests that we retain the properties of the WB dis-

tance function and the CXY distance function for simple polygons, and we add to it, our addition-

al considerations for complex polygons.

Table 5: Ranking of selected pair-wise distances between polygons

P1 P2 WB Rank CXY Rank PDF Rank WB - CXY WB - PDF CXY - PDF

1 2 1 1 1 0 0 0

3 4 2 3 3 1 1 0

0 5 3 4 4 1 1 0

0 4 4 2 2 2 2 0

4 5 5 5 5 0 0 0

2 5 6 6 8 0 2 2

1 4 7 7 6 0 1 1

2 4 8 8 7 0 1 1

1 5 9 9 10 0 1 1

0 2 10 10 9 0 1 1

Sum: 4 10 6

Average: 0.4 1 0.6

Comparison based on Correlation. The correlation using the Pearson‘s correlation

function between the WB distance function and the CXY distance function is 0.88, between the

WB distance function and PDF is 0.9, and between CXY distance function and PDF is 0.76. A

low correlation between PDF and the CXY distance function despite the same structure of the

distance functions is once again indicative of the importance of the other spatial attributes of the

polygons. A high correlation between PDF and the WB distance function exists for this test data-

set because both the distance functions are basically the same in terms of how spatial and non-

spatial attributes are combined. The main difference is that distribution & density are used in

www.manaraa.com

35

PDF, but not in the WB distance function. The distribution and density try to capture variations

in spatial objects within the polygons. Due to the normalization factor which is variable, and

more localized, within the WB distance function those variations were captured quite well for the

sample dataset considered. However, the WB distance function‘s way of handling local varia-

tions is limited. For example, consider the set of polygons (once again a subset of census block

groups of city of Lincoln, NE, along with their liquor licenses) shown in Figure 6. When the

pair-wise distance was computed for these polygons using the WB distance function and PDF, we

found the correlation between these two distance functions dropped significantly and was 0.68.

Figure 6: Subset Sample Dataset 2, along with the pair-wise distances between the various polygons.

2.4.2 Spatial Clustering Application

Our novel dissimilarity function, PDF, can be seamlessly integrated within any algorithm that

uses a distance measure in order to analyze spatial polygons. Here we demonstrate the applica-

tion of PDF to the k-medoids clustering algorithm in order to perform polygon-based spatial clus-

tering. In our clustering, no explicit cluster centre exists. The mean distance between a polygon

iP and all polygons within each cluster determines the membership of
iP . The algorithm termi-

nates when it reaches the maximal number of iterations or the membership of each polygon no

longer changes.

We first give two examples that show the benefits of the addition of organizational (ex-

trinsic spatial) attributes in computing the similarity between two polygons. The role of linear

www.manaraa.com

36

object features is illustrated by the following intuitive example where we analyze the clustering

results. When the polygons shown in Figure 7(a) are clustered into one cluster, the validity index

of the cluster is 76.92. When the linear feature that is shared by all the polygons is added, as

shown in Figure 7(b) the validity index increases to 111.11. This increase is directly attributable

to the addition of the linear feature which is shared by all the polygons present in the cluster. As

there is no explicit center for our clusters, we adapt the existing distance-based validity measure

(Turi and Ray 1998). A good clustering result should have a low intra-cluster distance and a high

inter-cluster distance. The intra-cluster distance is the average distance between each pair of po-

lygons in a cluster, and the inter-cluster distance is the average distance between each pair of po-

lygons in two clusters. Thus, a high-quality cluster is one whose validity index is large. The

clustering result with the maximum validity measure gives us the optimal number of clusters.

Figure 7: (a) Polygons (subset of watersheds in Nebraska) used to form a cluster (b) Polygons along with linear

spatial objects.

Another example shown in Figure 8 illustrates the importance of using areal objects in

determining the dissimilarity of polygons. When polygons are grouped into one cluster (Figure

8(a)), the validity index obtained is 83.33. After the addition of the lakes present within each po-

lygon, as shown in Figure 8(b), the validity index rises to 166.66. This increase in the validity

index shows that the addition of areal objects makes the clusters more cohesive, i.e. it increases

the similarity within the polygons that belong to the same cluster.

www.manaraa.com

37

Figure 8: (a) Polygons (subset of watersheds in Nebraska) used to form a cluster (b) Polygons along with areal

spatial objects.

2.4.2.1 Watershed Analysis

The dataset comprises of 69 watersheds within the state of Nebraska (Figure 9). A watershed is a

geographic region draining into a river, river system, or other body of water. It is a useful areal

unit of analysis for many applications including drought and water resource monitoring. The main

goal for this set of experiment was to cluster together watersheds that exhibit similar hydrological

behavior, and are spatially contiguous. Spatially contiguous clusters of watersheds are useful in

many applications. For example, the improvement of the economic efficiency in the reduction of

diffused water pollution rests on the identification and formation of homogenous groups of conti-

guous administrative units of a watershed. By jointly implementing pollution reduction measures,

these homogenous groups are able to diminish negative spillover effects and externalities. To

identify homogenous groups of administrative units within this watershed cluster analysis me-

thods are used. As the implementation of joint pollution mitigation measures is only sensible and

manageable in contiguous areas, the spatial relationship among administrative units is an essential

variable for this cluster analysis (Huchtemann & Frondel, 2010).

Data Processing and Feature Selection

Table 6 lists the attributes that are used for clustering watersheds. There are over eight hundred

hydrological observation stations including surface water stations, ground water stations, and

weather stations. The measurements taken at the various stations – surface water, ground water,

and precipitation, cannot be directly used in the clustering process. Therefore, taking the time se-

www.manaraa.com

38

ries data collected from these stations, we found the correlation between watersheds based on

their respective surface water, ground water, and weather stations.

Table 6: Attributes for Watersheds

Non-spatial Attributes

Correlation between surface water stations

Correlation between ground water stations

Correlation between precipitation stations

Intrinsic Spatial Attributes

Set of vertices of the watershed, Elongation of the

watershed,

Orientation of the watershed

Extrinsic Spatial Attributes

Point Object Attributes None

Linear Object Attributes Major Streams

Areal Object Attributes Lakes

Figure 9 shows the watersheds in the state of Nebraska along with the various spatial ob-

jects used in the process of clustering. The linear objects are the lines (rivers) going across several

watersheds, and the areal objects are the polygons (lakes) present within the watersheds.

Figure 9: Dataset for the first experiment – Watersheds in the state of Nebraska along with selected streams and

lakes used as spatial objects

Clustering Results for the Watershed Dataset

In order to observe the effects of the inclusion of different polygonal attributes in the clustering

process, we conducted experiments by using different combinations of the attributes of the poly-

gons/watersheds. When the watersheds are clustered using only their non-spatial attributes, the

watersheds with similar correlation indexes are clustered together. Their location in space has no

relation with the clustering process. Therefore, we get disjoint clusters in space. In Figure 10, the

left side ((a), (c), (e)) shows the clustering result when k = 3 and the right side ((b), (d), (f))

www.manaraa.com

39

shows the clustering results when k = 4. Clusters formed using only the non-spatial attributes

(Figure 10(a) & Figure 10(b)) are widely dispersed in space. With the addition of organizational

attributes, the spatial organization of the watersheds has its affect in the form of the density of

lakes within the watersheds, and the location of the streams – within the watersheds or exterior –

changes the similarity of the watersheds, and that in turn results in better quality of clustering

(Figure 10(c) & Figure 10(d)). If we compare Figure 10(a) with Figure 10(c) we can see that the

distribution and density of lakes have a significant impact on the clustering process. The water-

sheds with a high density of lakes clustered together belong to the same cluster in Figure 10(c)

while they were clustered into different clusters in Figure 10(a) when the organizational attributes

were not taken into account. Finally, when we add the structural attributes, watersheds located

adjacent to each other in space and sharing a boundary are clustered together (Figure 10(e) &

Figure 10(f)) because the spatial structure of the polygons within the geographic space plays an

important role in clustering adjacent watersheds together. Therefore, we not only get the clusters

with the highest quality, but they are spatially contiguous as well with the addition of the spatial

structure and organization of the watersheds along with their correlation indices.

Table 7 lists validity indexes for different combinations of k (number of clusters) and dif-

ferent combinations of non-spatial, structural attributes and organizational attributes using the

polygonal data for the watersheds. In Table 7, the highest validity index is obtained when k = 3

and all the three types of attributes – non-spatial, structural attributes, and organizational

attributes, are used for clustering. This suggests that the best quality clusters are formed when the

number of clusters is equal to 3, and all the three categories are attributes are taken into account.

As for the remaining validity indexes there is no visible pattern, and therefore, no clear conclu-

sions can be made. Note: If the number of polygons within a cluster is less than two, then the

validity index will be undefined.

www.manaraa.com

40

Figure 10: Result of clustering watersheds with. k = 3 ((a),(c),(e)) and k = 4((b),(d),(f)) using different combina-

tions of non-spatial, structural and organizational attributes.

Next, we also test the validity of our clustering results using the gap statistic (Tibshirani

et al. 2001) that is used to discover the number of clusters that exist in the dataset. The gap statis-

tic was computed using the gap function defined in the statistical package SAGx written in R.

The results for the watershed dataset are shown in Table 8. For the watershed dataset 3k , which

matches the result of our validity index.

Table 7: Clustering results for Watershed Dataset

k Validity Index, GDF

Non-Spatial At-

tributes Only

Non-Spatial and Extrin-

sic Spatial Attributes

Non-spatial and Intrin-

sic Spatial Attributes

Non-spatial, Intrinsic Spatial

and Extrinsic spatial Attributes

3 76.92 83.33 111.11 125.00

4 0.55 3.80 0.47 8.85

5 35.71 3.34 66.66 1.56

6 0.76 0.43 2.39 1.24

www.manaraa.com

41

Table 8: Gap Statistic results for the watershed dataset

k Gap Statistic

2 -0.28

3 -0.23

4 -0.47

5 -0.38

6 -0.31

2.4.2.2 Grouping Counties

For the second experiment we have taken the 93 counties of the state of Nebraska (Figure 11) as

the set of polygons. The motivation behind selecting this dataset is the fact that counties have

been partitioned into clusters for a long time. There are several applications where counties are

divided into groups by the government for jurisdiction purposes, such as congressional districts,

natural resource districts, etc. that pertains to non-spatial and spatial attributes. The goal is once

again to cluster counties that are similar to each other, and are spatially contiguous. Spatially

contiguous clusters of counties are important for applications involving resource distribution and

allocation. For example, in resource allocation problems involving redistricting, zones or districts

need to be defined where each district is a spatially contiguous cluster of counties or census tracts

or some other underlying spatial structure. If one tries to form these districts using a traditional

distance function such as Euclidean distance function or the Manhattan distance function, without

any additional constraints added to the clustering process, the result would be districts that are

spatially disjoint (Joshi et al. 2009c).

Data Processing and Feature Selection

Each county is represented by the set of attributes listed in Table 9. Figure 11 shows the counties

along with the organizational attributes used in clustering. For point objects we use the cities

(towns). In order to show the effect of linear features, we selected three highways – State route 2,

6, and 20, running across the state.

www.manaraa.com

42

Figure 11: Dataset for the second experiment – Counties in the state of Nebraska along with the point and linear

spatial objects

Table 9: Attributes for Counties polygons

Non-spatial Attributes Total Population

Intrinsic Spatial attributes Set of vertices of County polygons, Area

Extrinsic Spatial Attributes

 Point Object Attributes Towns

 Linear Object Attributes Selected Highways

 Areal Object Attributes None

Clustering Results for County Dataset

Several experiments were conducted using different combinations of the attributes of the poly-

gons. Our aim was to see the effect of the structural attributes and organizational attributes in

clustering process. In Figure 12, the left side ((a), (c), (e)) shows the clustering result when k = 3

and the right side ((b), (d), (f)) shows the clustering results when k = 4. It is observed once again

that the clusters become more compact and spatially contiguous as we add more spatial features

(structural attributes and organizational attributes) to the clustering process. The addition of struc-

tural attributes plays a big role in producing contiguous clusters. A closer inspection shows that

while clustering using non-spatial attributes only (Figure 12(a)), when k = 3, one of the clusters

consists of only one county with the largest area. Therefore, area turns out to be the dominating

attribute in this clustering process. Using non-spatial attributes only, when k = 4, we see that

Douglas and Lancaster counties — the counties containing the most populated cities in Nebraska

are clustered into one cluster, and no other county is clustered along with them. Cherry county —

the county with the largest area also remains in a cluster of its own. This is clearly not the way we

www.manaraa.com

43

would want to cluster counties when we want to partition them for any jurisdiction purpose where

we would want a more uniform number of counties (or population) in each cluster.

With the addition of organizational attributes in the clustering process (Figure 12(c)), we

see that the result of clustering improves – number of counties in the clusters is more even, and

zero singleton clusters are produced. Even though, area still seems to be dominating the clustering

of the largest counties together, the point object density and spatial distribution has an even big-

ger impact as it breaks the previously large clusters into smaller compact clusters. The counties

with a larger number of towns are now clustered together. As most of the towns are located along

the highways, they have both an indirect and direct impact on the process of clustering. They di-

rectly influence clustering since the highways are used as linear spatial object attributes in cluster-

ing. They also indirectly influence the process since the locations of many of the towns are

guided by highways. Finally, when we add structural attributes to the clustering process, we get

clusters that are a lot more uniform (Figure 12(e)) with almost the same number of counties in

each cluster, and that are spatially contiguous. The reason behind spatial contiguity is our boun-

dary adjusted Hausdorff distance that also takes into account the extent of boundary shared be-

tween two polygons. As a result the distance between two polygons sharing a boundary reduces,

and we get clusters of polygons located adjacent to each other in space. Table 10 lists validity

indexes obtained for different values of k with different combinations of the attributes.

As can be seen from Table 10, using non-spatial attributes only produces clusters that

have a very low validity index, implying low quality clusters. As we add spatial attributes – struc-

tural attributes and organizational attributes, to the non-spatial attributes the validity index in-

creases significantly. When clustering is performed taking into account the non-spatial and orga-

nizational attributes, an increase in the validity index is observed. This suggests that more infor-

mation about the polygons is needed to increase the quality of clustering. When clustering is per-

formed using non-spatial and structural attributes, the validity index increases further and we do

www.manaraa.com

44

not get any more bad clusters (with validity index of infinity). This implies that good quality clus-

ters are formed using these two sets of attributes. However, when clustering was performed using

all three attribute sets – non-spatial, structural attributes, and organizational attributes, we found

that the validity index increased even further, and the largest validity index ever was produced for

k =4. This suggests that the best quality clusters are formed using all the three types of attributes

together. To further evaluate our clustering results we have applied the gap statistic to the county

dataset to discover the number of clusters that exist in the dataset. The results of gap statistic are

shown in Table 11. For the county dataset 4k , which once again matches the result of our va-

lidity index.

2.4.2.3 Summary

Based on our experimental analysis on the clustering application, we have observed that with the

addition of the spatial attributes – both the structural and organizational attributes – within the

dissimilarity function allows for a more accurate comparison of the polygons, and helps us

achieve our goal of forming spatially contiguous and compact clusters using the k-medoids clus-

tering algorithm. For example, when clustering is based upon non-spatial attributes alone the re-

sult is spatially disjoint clusters (Figures 10(a), 10(b), 12(a), 12(b)). Therefore, the principles of

spatial autocorrelation and spatial heterogeneity are not met. The addition of spatial attributes

produces clusters that are spatially contiguous and compact (Figures 10(e), 10(f), 12(e), 12(f)).

Thus we have shown that even though k-medoids is not a favored algorithm in this domain, with

the use of the appropriate distance/dissimilarity function, the desired results can be produced us-

ing any distance-based algorithm such as k-medoids.

Furthermore, we have demonstrated the robustness of our dissimilarity function by apply-

ing it on two real and yet spatially different datasets – the watershed dataset, and the county data-

set. The watershed dataset had spatial attributes resulting primarily from natural factors. The

county dataset, on the other hand, is derived from human decisions. Due to the underlying simila-

www.manaraa.com

45

Figure 12: Result of clustering counties with. k = 3 and k = 4 using different combinations of non-spatial, struc-

tural and organizational attributes.

Table 10: Clustering results for County Dataset

k Validity Index, GDF

Non-Spatial

Attributes Only

Non-Spatial and Extrin-

sic Spatial Attributes

Non-spatial and Intrin-

sic Spatial Attributes

Non-spatial, Intrinsic Spatial

and Extrinsic spatial Attributes

2 0.004 8.55 18.52 18.18

3 Undefined†
 29.41 21.28 19.23

4 Undefined† 0.61 7.35 22.72

5 Undefined† 0.43 4.72 20.00

6 Undefined† Undefined† 16.39 16.39
†The validity index has a value of undefined when the number of polygons within a cluster is one.

Table 11: Gap Statistic results for the county dataset

k Gap Statistic

3 0.13

4 0.16

5 0.13

6 0.26

-rity within the behavior of every watershed, there do not exist any well-separated clusters. As a

result all the Gap values for the watershed dataset in Table 8 are below zero. On the other hand,

for the county dataset, since each county has distinct dissimilarities with respect to number of

www.manaraa.com

46

towns and population, there exist well-separated clusters. As a result all the gap values in Table

11 are above zero. However, as can be observed from Tables 7 and 10, using our adapted validity

index, we have clear notion on the improvement of the clustering quality with the addition of the

spatial attributes. For example, in the watershed dataset, when k = 3, and clustering is performed

using only the non-spatial attributes, the validity index is 76.92. With the addition of the organi-

zational attributes to the non-spatial attributes, the validity index now increases to 83.33. When,

on the other hand, the structural attributes were added to the non-spatial attributes, the validity

index increases by a bigger margin and is now at 111.11. Further improvement is observed in the

validity index of the clusters when all three types of attributes were used within the dissimilarity

function, and the index has now increased to 125.00. This result matches with the visual inspec-

tion of the clusters, and the clusters become more spatially contiguous and compact in Figure

10(e). A similar result is also observed in the county dataset experiment.

2.5 Conclusions and Future Work

While dissimilarity functions play a central role in many applications/domains, such functions in

the context of geospatial polygons are not well studied. In such domains, ignoring the spatial

aspects in dissimilarity is neither correct nor does it lead to accurate results. In this research, we

have developed a new similarity/dissimilarity measure for polygons known as the Polygonal Dis-

similarity Function (PDF) that integrates the non-spatial attributes of the polygon with the spatial

attributes encoded in the form of the structural and organizational information. In order to in-

corporate these properties, the polygons are represented using three sets of attributes: non-spatial

attributes, intrinsic spatial attributes and extrinsic spatial attributes. In the process of defining

our dissimilarity function, we have not only addressed the unary properties of the polygons, but

also their binary properties, by taking into account the linear and areal features that may be shared

by multiple polygons.

www.manaraa.com

47

We have shown that our proposed PDF outperforms the other distance functions pro-

posed in literature. It reduces the distance between the polygons that are most similar, and in-

creases the distance between the polygons that are most dissimilar. It takes a balanced yet flexible

approach to incorporate the influence of spatial and non-spatial aspects. Our comparative analy-

sis demonstrates that we retain the properties of the previously used well established distance

functions such as the WB distance function and the CXY distance function for simple polygons

yet is able to include additional considerations for complex polygons.

In essence, we have proposed a framework to include all the attributes of the polygons in

order to measure the similarity/dissimilarity between polygons. This framework will allow us to

administer a systematic approach to experimenting with different combinations of attributes by

giving the freedom to the user to change the weights of the different parts of the dissimilarity

function. Further, by taking into account computational complexity, with such a framework,

whether and how to develop an automated system for carrying out the clustering task or identify-

ing the appropriate attributes for clustering can be informed. Moreover, domain knowledge and

human expertise can be factored into the framework, for example, to determine the relative

weights of the various attributes. Thus, with this framework, we also aim to lend more structure

to the search process for the correct combination, inform algorithm developers of computational

complexity for automation, and better represent and engineer domain knowledge and human ex-

pertise. Our novel dissimilarity function can thus be seamlessly integrated into any polygon anal-

ysis algorithm that uses a distance function without added computational complexity.

While we have developed a dissimilarity function that takes the spatial analysis of poly-

gons a step further, there are many open questions that have not been addressed by our work. Ad-

ditional distance measures in the object space as well as more complex form of the combination

function that integrates the distances in the three spaces can be explored. One could design a dis-

tance measure for linear objects using their density and a distance measure for areal objects that

www.manaraa.com

48

takes into account the amount of sharing, and topology. Our approach can be extended to fuzzy

algorithms that will also have use in many geospatial applications. Another direction is to include

nominal, categorical, and ordinal attributes in our dissimilarity function to simplify our metho-

dology. We plan to investigate how to flexibly map the differences in values for these different

attributes onto a comparable scale.

Acknowledgements

We would like thank to David Marx for his valuable insight and feedback. We would also like to

extend our thanks to Lei Fu, Bill Waltman, and Tao Hong for their assistance in data processing

and preparation for this research.

Publications

This chapter appears in the following:

1. Joshi, D., Samal, A., & Soh, L-. K. (2009). A Dissimilarity Function for Clustering

Geospatial Polygons. 17th International Conference on Advances in Geographic Information

Systems (ACM SIGSPATIAL GIS 2009), (pp. 384-387). Seattle, WA.

2. Joshi, D., Samal, A., & Soh, L-. K. (under review). A Dissimilarity Function for Polygons,

submitted to Journal of Geographic Systems in Decemeber 2010.

www.manaraa.com

49

Chapter 3: Density-Based Clustering of Polygons

3.1 Introduction

Clustering is the process of unsupervised classification that is fundamental to spatial data mining

and spatial analysis. Several spatial clustering algorithms have been proposed in the past (see

Section 3.2.1). However, most of them are focused on clustering point data sets. There are several

applications of spatial clustering where clustering algorithms for point datasets may not give effi-

cient results. This mainly happens when polygons need to be clustered instead of points. For ex-

ample, an important application of polygonal clustering is the process of regionalization. Regio-

nalization is the process of region building where smaller units (polygons) are grouped together

into larger contiguous regions based on some attribute or criteria. Thus, regionalization produces

clusters of polygons that are spatially compact and contiguous. If polygons are indeed represented

as points and clustering is performed, the spatial information and relationships between polygons

are not captured and utilized during the clustering process. Due to the inadequacies of the point-

based clustering algorithms new clustering algorithms need to be developed in order to cluster

polygons. In this chapter we propose a novel algorithm P-DBSCAN for clustering polygonal da-

tasets.

Our algorithm P-DBSCAN is based on the well established density-based clustering algo-

rithm DBSCAN (Ester, Kriegel, Sander, & Xu, 1996). There are several advantages of using

DBSCAN as our reference algorithm. First, it has the ability to discover clusters of arbitrary

shapes such as linear, concave, and oval. Second, DBSCAN does not require the number of clus-

ters to be determined in advance. Finally, DBSCAN is scalable to be used with large databases.

The new algorithm P-DBSCAN extends DBSCAN to cluster polygons instead of points by rede-

fining the concepts of the neighborhood of a polygon, core polygon, border polygon, and noise

polygon. The clustering is done based on the distance between two polygons leading to the poly-

gons close to each other being clustered together, and thus resulting in spatially compact clusters.

www.manaraa.com

50

Note that a key component of our P-DBSCAN algorithm is the calculation of the distance func-

tion (see Section 3.3.2). Using this distance function, both contiguous polygons and disjoint poly-

gons can be clustered using our novel algorithm. When the polygons are contiguous in space, the

extent of the boundary shared by two polygons is taken into account while computing the dis-

tance between them. On the other hand, if the polygons are disjoint, the shared boundary compo-

nent is ignored. PDBSCAN is not restricted to polygons in 2-D space only, and is applicable to

polygons in n-dimensional space, with n > 2.

The rest of the chapter is organized as follows. Section 3.2 presents the related work giv-

ing a background on spatial clustering and density-based spatial clustering. Section 3.3 defines

the density-based concepts for polygons, our methodology for computing the distance between

two polygons, and explains our algorithm in detail. Section 3.4 presents an application of our

clustering algorithm. Finally, our conclusion and directions for future work are given in Section

3.5.

3.2 Related Work

In this section we present a background on different spatial clustering algorithms. Following

which, we present an overview of the density-based clustering concepts for points.

3.2.1 Spatial Clustering Algorithms

Clustering algorithms can be categorized into five main types: Partitional, Hierarchical, Density-

based, Grid-based, and Model-based clustering algorithms. In Partitional algorithms, partitions of

a database D are developed, and a set of clusters are formed. The number of clusters generated

has to be specified in advance. The cluster similarity is measured with respect to the mean value

(cluster center) of the objects in a cluster. Examples are PAM (Ng & Han, 1994), CLARA (Ng &

Han, 1994), and CLARANS (Ng & Han, 2002).

www.manaraa.com

51

Hierarchical algorithms create a hierarchical decomposition of the database. This hierar-

chical decomposition is represented as a dendrogram. Each level of the dendrogram represents a

set of clusters. Thus, a set of nested clusters organized as a hierarchical tree are produced. As a

result the initial knowledge of the number of clusters is no longer required. However, a termina-

tion condition needs to be specified. Examples of hierarchical clustering are CURE (Guha,

Rastogi, & Shim, 1998) and BIRCH (Zhang, Ramakrishnan, & Linvy, 1996).

Density-based clustering algorithms are based on the idea that objects which form a

dense region should be grouped together into one cluster. These algorithms search for regions of

high density in a feature space that are separated by regions of lower density. Thus, density-based

methods can be used to filter out noise, and discover clusters of arbitrary shape. Examples of den-

sity-based clustering algorithms are DBSCAN (Ester, Kriegel, Sander, & Xu, 1996), DENCLUE

(Hinneburg & Keim, 1998), and OPTICS (Ankerst, Breunig, Kriegel, & Sander, 1999).

Grid-based algorithms are based on multiple level grid structure. The entire space is

quantized into a finite number of cells on which operations for clustering are performed. Summa-

rized information about the area covered by each cell is stored as an attribute of the cell. The

main advantage of this approach is its fast processing time. However, the summarized informa-

tion leads to loss of information. Examples of grid-based clustering algorithms are STING

(Wang, Yang, & Muntz, 1997), WaveCluster (Sheikholeslami, Chatterjee, & Zhang, 1998), and

CLIQUE (Agrawal, Gehrke, Gunopulos, & Raghavan, 1998).

In model-based algorithms a model is hypothesized for each of the clusters and the idea is

to find the best fit of that model to each cluster. They are often based on the assumption that the

data are generated by a mixture of underlying probability distributions. COB-WEB (Fisher, 1987)

is an example of this approach.

We select the density-based approach for clustering polygons since there is no need to

know the number of clusters in advance as required in partitional algorithms, nor is there a need

www.manaraa.com

52

to store summarized information as in grid-based algorithms. Moreover, polygons in geographic

space and in many other domains naturally respond to the density-based approach. For example,

in geographic space, we have a set of contiguous polygons, and another set of polygons located

far away from the first set. At a larger scale, these two sets will belong to a cluster each, thus cor-

responding to clusters formed where the object density is high.

3.2.2 Density-Based Concepts for Points

A density-based clustering algorithm hinges upon the assumption that a valid cluster must have

sufficient density. Ester et al. proposed a density-based clustering algorithm used for clustering

point datasets, called DBSCAN (Ester, Kriegel, Sander, & Xu, 1996). Here we list the main con-

cepts of density for points as defined in (Ester, Kriegel, Sander, & Xu, 1996). These concepts are

later (see Section 3.3.1) extended in our clustering algorithm P-DBSCAN for clustering polygons.

Definition 1: (-neighborhood of a point) The -neighborhood of a point , denoted by

 , is defined by .

Definition 2: (directly density-reachable) A point p is directly density-reachable from a

point q wrt. , if 1) and 2) (core point condition).

Directly density-reachable is symmetric for pairs of core points. In general, however, it is

not symmetric if one core point and one border point are involved.

Definition 3: (density-reachable) A point is density reachable from a point wrt. ,

 if there is a chain of points such that is directly density-

reachable from .

Definition 4: (density-connected) A point p is density connected to a point q wrt. ,

and if there is a point such that both, and are density-reachable from wrt. , .

Density-connectivity is a symmetric relation. For density reachable points, the relation of density-

connectivity is also reflexive.

www.manaraa.com

53

Definition 5: (cluster) Let be a database of points. A cluster wrt. , is a

non-empty subset of satisfying the following conditions:

1) if and is density-reachable from wrt. and , then . (Max-

imality)

2) : is density-connected to wrt. and . (Connectivity)

Definition 6: (noise) Let be the clusters of the database wrt. parameters and

 , then we define the noise as the set of points in the database not belonging to any clus-

ter , i.e. .

3.3 Density-Based Clustering of Polygons

3.3.1 Density-Based Concepts for Polygons

Since polygons are spread out in space, factors that would have no effect on points—such as to-

pology and direction—come into play. Also, if the polygons are share boundaries, then two poly-

gons sharing a larger extent of their boundary should be considered closer to each other as com-

pared to two polygons sharing a very small portion of their boundaries. This conclusion follows

from the observation that more close two polygons are to each other, more similar they will be in

their characteristics. As a result of these factors, some of the density-based concepts for points do

not directly apply to polygons. Mainly, the concept of a core polygon and its neighborhood are

fundamentally different from that of a core point. Once a core polygon is defined, and the poly-

gons that belong to its neighborhood, the same concepts of directly-density reachable, density-

reachable, and density-connected for points can then be applied to polygons. In the following, we

formalize the density-based concepts for polygons.

ε-neighborhood of a Polygon: The -neighborhood of a polygon , denoted by , is

defined by , where is the data set of polygons, and

www.manaraa.com

54

is defined as the distance between polygons and . For example in Figure 1, the -

neighborhood of the polygon is .

Radial Spatial Neighborhood of a Polygon: The neighborhood of a polygon can be fur-

ther partitioned. That is,
 such that R is the number of equal-size sectors

radially partitioning the space around the polygon p. The definition of extends directly

from the ε-neighborhood of the polygon, but only looks at the sector indexed by i. Figure 13

shows an example of the radial spatial neighborhood of a polygon (shaded).

Figure 13: Radial spatial partitions of a polygon‘s neighborhood. Note that here the first sector is as

shown, and the ordering is clockwise. This is arbitrary for illustration purpose.

The radial spatial neighborhood of polygon p in Figure 13 is divided into 8 sectors:

 . Therefore, , , , ,

 , , , Thus,

which is the same as .

Core Polygon: A core polygon is defined as a polygon that has at least a minimum

number of polygons (MinPolys) within its -neighborhood, and there are at least a minimum

number of radial spatial partitions (MinS) that are non-empty, i.e.

 . For example, in Figure 14, if =1, MinPolys = 4 and MinS = 8, p, o and q are core poly-

gons.

Border Polygon: A border polygon is defined as a polygon that has more than

 of its radial spatial partitions empty, i.e.
 . ,

www.manaraa.com

55

where is the total number of partitions. For example, in Figure 14 with =1, MinPolys = 4 and

R = 8, and MinS = 8, b is a border polygon, since .

Outlier Polygon: An outlier polygon is defined as a polygon that does not have any po-

lygons within the threshold distance of .

Directly Density-Reachable: A polygon is directly density-reachable from a polygon

 wrt , if

1) and

2) is a core polygon.

Directly density-reachable is symmetric for pairs of core polygons. In general, however,

it is not symmetric if one core polygon and one border polygon are involved. For example, in

Figure 14 polygon a is directly density-reachable from a polygon p, however polygon p is not

directly density-reachable from a polygon a.

Density-Reachable: A polygon is density-reachable from a polygon if there is a

chain of polygons such that is directly density-

reachable from . In Figure 14 polygons p is density-reachable from po-

lygon q.

Figure 14: Synthetic set of polygons (Red – Core Polygon, Green - -neighborhood of the core polygons)

www.manaraa.com

56

Density-Connected: A polygon is density connected to a polygon if there is a poly-

gon such that both, and are density-reachable from . In Figure 14, polygon a and polygon

b are density-reachable from polygon o, and thus are density-connected to each other.

Cluster: A cluster wrt. is a non-empty subset of satisfying the following condi-

tions:

1) Maximality: is density-reachable from , then .

2) Connectivity: is density-connected to .

3.3.2 Distance Function for Polygons

Each polygon is represented as a set of vertices that form the boundary of the polygon. We use

the Hausdorff distance as the basis for computing the distance between two polygons in the

boundary space. The Hausdorff distance between two sets of points (Rote, 1991) is defined as the

maximum distance of points in one set to the nearest point in the other set. Formally, the Haus-

dorff distance () from set A to set B is defined as

 (1)

where a and b are points of sets A and B, respectively, and is any distance metric

between the two points a and b. The distance metric used within Hausdorff distance in order to

calculate the distance between two points is the Euclidian distance.

If the boundaries of the polygons are represented by two sets of points and

respectively, we use the following defined distance measure () between two polygons

 (2)

Intuitively, we expect the distance between two polygons with shared boundary to be

less. However, the standard Hausdorff distance is defined on the set of points and does not incor-

porate any sharing of the boundary. In order to incorporate this, we define a new distance meas-

www.manaraa.com

57

ure, called the boundary adjusted Hausdorff distance, that is inversely proportional to the length

of the shared boundary between the two polygons, between two polygons and as follows:

 (3)

where is the original standard Hausdorff distance, and are the perimeter lengths

of polygons and , respectively, and is the length of their shared boundary. This distance,

 , is smaller than the standard Hausdorff distance when two polygons have shared boundary,

and becomes the standard Hausdorff distance when two polygons have no shared boundary, i.e.,

when = 0. We use twice the shared distance in the definition to balance the effect of the de-

nominator.

3.3.3 P-DBSCAN Algorithm

Our algorithm works similar to DBSCAN where we select a polygon from the dataset and

check if it has been assigned to a cluster already. If the polygon is still unclassified, then the Ex-

pandCluster routine is called. As in DBSCAN, ExpandCluster is the where the cluster assignment

is done. P-DBSCAN checks whether a polygon is a core polygon or not by calling the Expanda-

ble method. This method generalizes the method of checking for the coreness of a polygon or any

other object being clustered, as opposed to DBSCAN that implicitly checks only for the MinPts

condition. If a polygon is classified as a core polygon, its neighbors are retrieved from the data-

base and assigned to the same cluster as the core polygon. Figure 15 presents our proposed P-

DBSCAN Algorithm.

DBSCAN now becomes a special case of P-DBSCAN. The time complexity of our algorithm

remains the same as DBSCAN that is where is the size of the database.

3.4 Experimental Analysis

To show the effectiveness of our algorithm we have conducted several experiments and compared

our results with DBSCAN. The input to the P-DBSCAN algorithm are the polygons, a pre-

www.manaraa.com

58

Figure 15: P-DBSCAN Algorithm

defined and a pre-defined . is set to , and is set to for all experiments as

well. The input to the DBSCAN algorithm are the centroids of the polygons, a pre-defined and

a pre-defined . To demonstrate the robustness of our algorithm we use two different expe-

riments. We first use a synthetic dataset which is a 10 10 grid of 1 1 unit squares. We then

use two real datasets from a practical application, i.e. the census tracts of two states in USA –

Nebraska and South Dakota. When DBSCAN was applied on these datasets, the Euclidean dis-

tance was computed between the centroids of the polygons in order to measure how close they are

to each other. P-DBSCAN uses the modified Hausdorff distance function as described in 3.3.2.

All the three datasets are sets of contiguous polygons. Thus, both the algorithms DBSCAN and P-

DBSCAN when applied with the appropriate input parameters should result in a single cluster

consisting of all the polygons.

P-DBSCAN

Input: D, ε, MinPolys

Output: Set of Clusters
Initially all polygons are UNCLASSIFIED
ClusterId is initialized
For each polygon p in D

If its ClusterId is UNCLASSIFIED then

call ExpandCluster.

If ExpandCluster returns True then

 increment ClusterId
End If

End If

End For

ExpandCluster

Input: p, ClusterId

Output: True or False
If p is Expandable then

 Set the ClusterID of p to ClusterId

 For each neighbor of p,

Call the ExpandCluster routine.

 Return True.

Else return False.

Expandable

Input: p

Output: True or False
If p is surrounded by polygons in at least MinS

radial spatial partitions then

Get the ε-Neighborhood of p.

If ε-Neighborhood of p contains MinPolys po-

lygons then

Return True

Else return False.

www.manaraa.com

59

3.4.1 Analysis using Synthetic Dataset

The first set of experiments were conducted using a 10 10 grid resulting in a dataset with 100

polygons all of the same size and shape. The reason to use this dataset was to show that P-

DBSCAN produces the same results as DBSCAN when all the polygons are equidistant from

each other, making DBSCAN a special case of P-DBSCAN. In the first test, we applied

which resulted in zero clusters (Figure 16) since the distance was too small to include any other

polygon in its neighborhood. When (Figure 17(a)), all the polygons were grouped togeth-

er in the same cluster by both the algorithms, i.e. DBSCAN and P-DBSCAN.

Figure 16: Result of clustering using DBSCAN (a) Polygons used for clustering (b) Expanded version of dataset

showing

Figure 17 shows how the cluster grows upon the application of the DBSCAN algorithm

to the dataset. Figure 17(b) shows the first core polygon in red. The surrounding polygons shown

in green belong to the -neighborhood of the core polygon. Figure 17(c) shows the next core po-

lygon detected. Finally Figure 17(e) shows the entire cluster. All the polygons except the four

corner polygons shown in green were marked as core polygons by the algorithm.

Figure 17: Result of clustering using DBSCAN (a) (b) First core polygon(Red) and its -

neighborhood (Green) (c) Consecutive core polygon detected and its -neighborhood (d) Further progression of core

polygon detection belonging to the same cluster (e) Final result – All polygons belong to the same cluster.

www.manaraa.com

60

We examine the performance of P-DBSCAN using the same dataset. The spatial neigh-

borhood of a core polygon is divided into radial partitions with

 .The result of clustering the polygons shown in Figure 17(a) can

be seen in Figure 18.

Figure 18: Result of clustering using P-DBSCAN (a) Polygons used for clustering

 (b) First core polygon(Red) and its -neighborhood (Green) (c) Further progression of core polygon de-

tection belonging to the same cluster (d) Final result – All polygons belong to the same cluster

We can see in the above figures that while the core points and core polygons are not the

same, both the algorithms resulted in the same cluster consisting of all the polygons in the grid.

3.4.2 Analysis using Real Datasets

Experiments were conducted on two sets of real data - the Nebraska census tract dataset, and

South Dakota census tract dataset. The Nebraska dataset (Figure 19) consists of a set of 505 con-

tiguous polygons. Both the algorithms DBSCAN and P-DBSCAN were applied to this dataset

using different values of , , and .

The results for DBSCAN with different values of and can be seen in Figure 20.

We start with the value as average distance between the centroids of the polygons in the dataset

which is 0.75, and (Figure 20(a)). We find that all the polygons are clustered togeth-

er to form one large cluster. When was increased to (Figure 20(b)), the number of clus-

ters did not increase and some polygons were left out from the cluster. With a smaller value of

more clusters are produced with a large number of polygons being left unclustered.

www.manaraa.com

61

Figure 19: Census Tract Polygons in Nebraska dataset

Figure 20: Results of clustering using DBSCAN (a) (b) (c)

 (d)

The results for P-DBSCAN with different value and can be seen in Figure

21. Here too we start with . was set to 1, 2, and 5. With

 (Figure 21(a)), it was seen that all the polygons belonged to a cluster

leaving no polygons unclustered. As was increased (Figure 21(b) & 21(c)), the number

of polygons left unclustered increased. When was increased, number of polygons belonging to a

cluster reduced even further, leaving a lot white space or unclustered polygons within the dataset

(Figure 21(d)).On the other hand, when was increased, and reached to a value of , all the poly-

gons were clustered together to belong to the same cluster. The same trend of number of clusters

detected with increasing was seen here as well, with all the polygons belonging to the same

cluster when (Figure 21(f)).

www.manaraa.com

62

In order to compare the results of both the algorithms shown above, we compute the

compactness of a cluster using the Schwartzberg Index (Schwartzberg, 1996). It measures the

compactness of a cluster as the square of the perimeter of the cluster divided by the area of the

cluster. The lower the value of this index, the more compact the cluster is.

Figure 21: Results of clustering using P-DBSCAN (a) (b)

(c) (d) (e) (f)

The compactness index was computed for the clusters formed by DBSCAN and P-

DBSCAN for the Nebraska dataset. In order to compare the compactness of the clusters formed

by both the algorithms, we computed the average all the clusters formed at a given and

 .The results are shown in Figure 22.

Figure 22: Compactness Ratio for clusters formed using DBSCAN and P-DBSCAN

www.manaraa.com

63

As shown in Figure 22, P-DBSCAN produces clusters with a lower compactness index.

This implies that the clusters formed using P-DBSCAN are spatially more compact than the clus-

ters formed using DBSCAN.

The South Dakota dataset (Figure 23) consists of 236 contiguous polygons. Both the al-

gorithms DBSCAN and P-DBSCAN were applied to this dataset using different values of ,

 , and .

The results of clustering using DBSCAN with different values of and are

shown in Figure 24. As before, we start with which is the average distance between the

polygons in the dataset. As increases, there are polygons which are left unclustered (Fig-

ure 24(b) & 24(c)). As is increased to , all the polygons are clustered together in one poly-

gon. At this point, the value of has no effect on the clustering process.

Figure 23: Census Tract Polygons in South Dakota dataset

Figure 24: Result of clustering using DBSCAN (a) (b) (c)

 (d)

www.manaraa.com

64

The results of clustering using P-DBSCAN with different values of and , and

 can be seen in Figure 25. As done for DBSCAN, we start the results with and

 (Figure 25(a)) we see that all polygons are clustered with none of the polygons

left unclustered. The number of clusters is more than DBSCAN, and none of the clusters contains

only one polygon. When the value of is increased some of the polygons remain un-

clustered (Figure 25(b) & 25(c)). Finally, when (Figure 25(d)), all the polygons are clus-

tered together into one cluster. At this point, the value of has no effect on the cluster-

ing process.

Figure 25: Results of clustering using P-DBSCAN (a) (b)

(c) (d)

The results obtained for DBSCAN and P-DBSCAN as shown above were compared us-

ing the compactness index. Once again we compare the results by computing the average com-

pactness index of all the clusters formed at a given and . Figure 26 shows the

results. The number above each bar represents number of clusters. P-DBSCAN produces clusters

with a lower compactness ratio, except for in one case where DBSCAN produces greater number

of small clusters. This implies that the clusters formed using P-DBSCAN are more compact than

the clusters formed using DBSCAN.

www.manaraa.com

65

Figure 26: Compactness Ratio for clusters formed using DBSCAN and P-DBSCAN.

3.4.3 Summary of Experiments

Summarizing the results of our experiments, we make the following conclusions:

1) plays a major role in deciding the formation of the clusters. The smaller the the smaller

will be the clusters. As we increase , there will always be a value at which all the polygons

will be grouped into one cluster. Further, depending on the average size of the polygons

and thus the average distance between polygon centroids, the value of should be adjusted

accordingly. That is, if the polygons are large, then should be increased, and vice versa.

2) parameter plays an important role in deciding if a polygon is a core polygon or

not. Compared to in DBSCAN, additoinal information could be derived from the

average neighborhood of a cluster to better select a value for . For example, if

the polygons are mostly rectangular such that each polygon is likely to have 3 or 4 neigh-

bors, then setting = 5 might be too conservative, leading to many, small clusters.

Further, by if the number of sectors of a polygon‘s neighborhood occupied by another po-

lygon is generally large yet the number of neighboring polygons is low, then that indicates

that polygons are surrounded by larger polygons. In that case, it might be more appropriate

to set low.

5
4

www.manaraa.com

66

3.5 Conclusion and Future Work

We have proposed a new clustering algorithm for clustering polygons. Our algorithm is based on

the density-based clustering algorithm DBSCAN. While some concepts of DBSCAN are directly

applicable for clustering polygons, concepts of core and border points as used in DBSCAN can-

not be directly applied to define core and border polygons. Therefore, we re-define the concepts

of core and border polygons. We introduce the concept of an outlier polygon, and a radial parti-

tion-based spatial neighborhood of a polygon which takes into account the topological properties

of the polygons in addition to the density of the polygons in the dataset.

We also proposed using our modified Hausdorff distance function to compute the distance

between the polygons while clustering them. Our distance function implicitly defines two poly-

gons sharing a large extent of their boundaries to be close to each other. This is based on the in-

tuitive concept of greater the sharing, more the similarity. However, we do not take into account

that if the boundary is a country border, or a mountain range – a feature which may prohibit the

clustering of the two polygons on either side together, then the distance should not be minimized.

In our future research we will modify our distance function to take into account the type of the

boundary between the two polygons.

Our comparison of the clustering results of DBSCAN and P-DBSCAN showed that more

compact clusters are formed using P-DBSCAN. Thus our objective of producing compact clusters

is satisfied by our proposed novel algorithm.

Currently, the clustering is done only on the basis of distance between the two polygons. In

our future experiments, we plan to introduce the concept of spatial autocorrelation in the process

of clustering to enhance the compactness of the clusters further. We will be performing multi-

dimensional clustering, where more attributes of the polygons will be taken into account while

clustering the polygons.

www.manaraa.com

67

Acknowledgment

We would like to thank Tao Hong for his help in writing the programs to pre-process the da-

tasets. We would also like to extend our thanks to Dr. David Marx for his guidance.

Publications

This chapter appears in the following:

1. Joshi, D., Samal, A., & Soh, L-. K. (2009). Density-Based Clustering of Polygons. IEEE

Symposium Series on Computational Intelligence and Data Mining, (pp. 171-178). Nashville,

TN.

www.manaraa.com

68

Chapter 4: Density-Based Clustering of Polygons in the Presence

of Obstacles

4.1 Introduction

Spatial clustering is the process of grouping similar objects based on their proximity to each oth-

er, or their relative density in space. It has numerous applications in spatial data mining, spatial

data analysis, pattern recognition, image processing, market research etc. (Tung, Hou, & Han,

2001). The development of these algorithms has been an active area of research for the past sev-

eral years (Ester, Frommelt, Kriegel, & Sander, 2000), (Han, Kamber, & Tung, Spatial clustering

methods in data mining: A Survey, 2001). Most of these algorithms focus on clustering point data

sets, and perform unsupervised classification of data objects. However, in geographic applica-

tions generally the space is divided into polygons such as census tracts, counties, states, water-

sheds, agro-economic zones, traffic analysis zones, etc. When point-based clustering techniques

are applied to polygonal datasets, the current state-of-the-art in spatial clustering does not give

accurate results (Joshi, Samal, & Soh, Density-Based Clustering of Polygons, 2009b), (Joshi,

Samal, & Soh, A Dissimilarity Function for Clustering Geospatial Polygons, 2009a), (Joshi, Soh,

& Samal, Redistricting Using Heuristic-Based Polygonal Clustering, 2009c). To illustrate, an in-

stance of an important application of polygonal clustering is the process of regionalization. Re-

gionalization is the process of region building where smaller units (polygons) are grouped togeth-

er into larger contiguous regions based on some attribute or criteria (Poone, 1997). Thus, regiona-

lization produces clusters of polygons that are spatially compact and contiguous. If polygons are

indeed represented as points and clustering is performed, the spatial information and relationships

between polygons are not captured and utilized during the clustering process (Joshi, Samal, &

Soh, Density-Based Clustering of Polygons, 2009b), (Joshi, Samal, & Soh, A Dissimilarity

www.manaraa.com

69

Function for Clustering Geospatial Polygons, 2009a), (Joshi, Soh, & Samal, Redistricting Using

Heuristic-Based Polygonal Clustering, 2009c).

Furthermore, in the real world, obstacles such as rivers, lakes, mountains, and other man-

made barriers such as political boundaries, are present that may affect how the grouping together

of objects located close to each other should be clustered. For example, two adjacent counties that

otherwise would belong the same cluster will no longer be clustered together if the shared boun-

dary between the counties is also a part of the state boundary. Thus, the state boundary here acts

as an obstacle that leads to the division of a big cluster into smaller clusters. In other words ob-

stacles may be defined as un-passable zones through which a path cannot be defined.

Typically, clustering algorithms use the standard Euclidean distance in order to measure

the spatial proximity of the objects. This assumes that there exists a straight line path between the

two objects (Estivill-Castro & Lee, 2000a). However, this assumption fails in the presence of

obstacles that prevent the traversing of the straight line paths between two objects. Thus, in this

case, other distance functions that find the shortest feasible path between the objects in the pres-

ence of obstacles are required to measure the spatial proximity of objects.

Some of the spatial clustering algorithms have been extended to handle obstacles

(Estivill-Castro & Lee, 2000b), (Wang, Rostoker, & Hamilton, 2004), (Zaïane & Lee, 2002),

(Zhang, Wang, Wu, Fan, & Li, 2006) as spatial constraints. (See Section 4.2.1 for an overview of

these algorithms.) However, all of these algorithms are designed for point datasets. By perform-

ing point-based clustering of polygons, the spatial and topological structure of the polygons

would be lost. Furthermore, a major difference between point datasets and polygonal datasets is

that while clustering the point datasets, the obstacles are always objects that are external to the

point objects. Whereas, for the polygonal datasets, the obstacles may lie inside a polygon, and

may even be shared by more than one polygon. For the algorithms described in Section 4.2.1

there is no easy method to handle such complications. The current state-of-the-art in the spatial

www.manaraa.com

70

clustering in the presence of obstacles thus cannot handle polygonal datasets with obstacles effec-

tively.

This chapter presents two significant contributions to address the challenges described

above. First, we define the visibility relationship between two polygons. The polygons may be

completely visible to each other, partially visible, or invisible with respect to each other in the

presence of obstacles. (The partially visible case is unique to polygons and is not applicable to

point datasets.) These visibility relationships are defined with respect to the vertices of one poly-

gon visible to the other polygon and vice-versa. Based on this number, we quantify the visibility

between two polygons by computing the degree of visibility for the two polygons. These visibili-

ty relationships and the degree of visibility for the polygons are defined in Section 4.3.1. Second,

we present a novel algorithm, P-DBSCAN+, for clustering polygons in the presence of obstacles.

P-DBSCAN+ is based on the density-based clustering algorithm for polygons, namely, P-

DBSCAN (Joshi, Samal, & Soh, Density-Based Clustering of Polygons, 2009b), which in turn is

based on the popular density-based clustering algorithm for point datasets, namely, DBSCAN

(Ester, Kriegel, Sander, & Xu, 1996). Briefly, P-DBSCAN+ makes use of the polygonal density-

based concepts defined in (Joshi, Samal, & Soh, Density-Based Clustering of Polygons, 2009b)

(c.f. Section 4.2.2) and use the obstructed Hausdorff distance function (c.f. Section 4.3.3) to find

the obstructed ε-neighborhood of a polygon. The obstructed-facilitated Hausdorff distance is in

turn computed using the visibility graph for the polygonal dataset. Furthermore, PDBSCAN+

considers three different types of obstacles: (1) point obstacles such as police stations and acci-

dent sites, (2) linear obstacles such as rivers, and (3) polygonal obstacles such as lakes and moun-

tains.

In order to evaluate the effectiveness of our algorithm, we first demonstrate the behavior

of P-DBSCAN+ on a synthetic dataset before evaluating its effectiveness in clustering census

tracts with railroads, rivers, and lakes as obstacles in the city of Lincoln, NE. Furthermore, we

www.manaraa.com

71

also compare and contrast our algorithm with one of the existing point-based spatial clustering

algorithm in the presence of obstacles, namely, DBCLuC. Our experiments show that P-

DBSCAN+ outperforms the point-based clustering algorithms in handling polygonal datasets, and

cases of partial visibility, by detecting clusters with overall visibility of 1.0. DBCLuC on the oth-

er hand clusters partially visible polygons with the completely visible polygons, and therefore

produces clusters which may have some polygons that are not completely visible to other poly-

gons within the cluster.

The rest of the chapter is organized as follows. Section 4.2 presents the related work giv-

ing a background on spatial clustering in the presence of obstacles, and the density-based con-

cepts for polygons. Section 4.3 gives the basic definitions for our proposed approach, describes

the obstructed distance function for polygons, and explains our algorithm in detail. Section 4.4

presents an application of our clustering algorithm. Finally, our conclusion and directions for fu-

ture work are given in Section 4.5.

4.2 Related Work

In this section we present a brief introduction to the four main spatial clustering algorithms in the

presence of obstacles – COD-CLARANS, AUTOCLUST+, DBCluC, and DBRS+. While COD-

CLARANS follows a partitional clustering approach, AUTOCLUST+ is based on the principle of

graph partitioning. Both DBCluC and DBRS+ are density-based clustering algorithms. Followed

by which we present the density-based concepts for polygons as defined in (Joshi, Samal, & Soh,

Density-Based Clustering of Polygons, 2009b).

For our algorithm we have chosen to use a density-based approach for its advantages.

First, it has the ability to discover clusters of arbitrary shapes such as linear, concave, and oval.

Second, it does not require the number of clusters to be determined in advance. Finally, the densi-

ty-based algorithms have been shown to be scalable to large databases. P-DBSCAN (the base

algorithm (presented in (Joshi, Samal, & Soh, Density-Based Clustering of Polygons, 2009b)) of

www.manaraa.com

72

the novel algorithm – P-DBSCAN+ presented in this chapter) extends DBSCAN (a well estab-

lished density-based clustering algorithm) to cluster polygons instead of points by redefining the

concepts of the neighborhood of a polygon, core polygon, border polygon, and noise polygon.

The clustering is then performed based on the density-connectivity between two polygons leading

to the polygons close to each other being clustered together, and thus resulting in spatially com-

pact clusters.

4.2.1 Spatial Clustering in the Presence of Obstacles

COD_CLARANS (Tung, Hou, & Han, 2001) was the first obstacle constraint partitioning cluster-

ing method. It is a modified version of the CLARANS partitioning algorithm (Ng & Han, 2002)

adapted for clustering in the presence of obstacles. The main idea is to replace the Euclidean dis-

tance function between two points with the obstructed distance, which is the length of the shortest

Euclidean path between two points that does not intersect any obstacles. The calculation of ob-

structed distance is implemented with the help of several steps of preprocessing, including build-

ing a visibility graph, micro-clustering, and materializing spatial join indexes. After preprocess-

ing, COD_CLARANS works efficiently on a large number of obstacles.

AUTOCLUST+ (Estivill-Castro & Lee, 2000b) is a version of AUTOCLUST (Estivill-

Castro & Lee, 2000b) enhanced to handle obstacles. The advantage of the algorithm is that the

user does not need to supply input parameter values such as the threshold distance or the number

of clusters in order to detect the clusters. There are four steps in AUTOCLUST+. First, it con-

structs a Delaunay diagram (Delaunay, 1932). Then, a global variation indicator, the average of

the standard deviations in the length of incident edges for all points, is calculated to obtain global

information before considering any obstacles. Third, all edges that intersect with any obstacles

are deleted. Finally, AUTOCLUST is applied to the planar graph resulting from the previous

steps. When a Delaunay edge traverses an obstacle, the length of the distance between the two

end-points of the edge is approximated by a detour path between the two points. However, the

www.manaraa.com

73

distance is not defined if no detour path exists between the obstructed points. AUTOCLUST+

algorithm inherits the limitation of AUTOCLUST algorithm, which builds a Delaunay structure

to cluster data points with obstacles costly and is unfit for a large number of data.

DBCLuC (Zaïane & Lee, 2002), based on DBSCAN (Ester, Kriegel, Sander, & Xu,

1996), has been extended to handle obstacles. Instead of finding the shortest path between the two

objects by traversing the edges of the obstacles, DBCLuC determines the visibility through ob-

struction lines. An obstruction line, as constructed during preprocessing, is an internal edge that

maintains visible spaces for the obstacle polygons. Two points are considered to be visible to

each other if the edge joining them does not intersect any obstruction line. After such preprocess-

ing, DBCLuC is a very good density-based clustering approach for large datasets containing ob-

stacles with many edges. However, constructing obstruction lines is very expensive for concave

polygons, because the complexity is O(v
2
), where v is the number of convex vertices in obstacles.

DBRS+ (Wang, Rostoker, & Hamilton, 2004) extends the density-based clustering me-

thod DBRS (Wang & Hamilton, 2003) to handle obstacles. DBRS+ works by determining if both

the points are within the same connected region. If yes, the distance between them as that com-

puted by DBRS. However, if two data points belong to different connected regions, the distance

between the two points is infinity. This distance function is known as the unobstructed distance

function. Using the unobstructed distance function, DBRS+ then determines the unobstructed

neighborhood of a point, following which it also uses the same approach as DBSCAN to detect

the clusters. The worst-case time complexity of DBRS+ in the presence of obstacles is O(nlog n+

nlogv+ nv'
2
) where n is the size of the dataset, v is the number of vertices in the obstacles and v' is

the total number of vertices in all local obstacles.

In this chapter, we compare P-DBSCAN+ to DBCluC as both are density-based cluster-

ing algorithms, though the latter is point-based. We do not include DBRS+ in this comparison,

even though it is, as summarized above, also density-based. This is because DBRS+ also consid-

www.manaraa.com

74

ers non-spatial attributes to help in the clustering process while P-DBSCAN+ does not, and sup-

pressing the non-spatial attributes would essentially make DBRS+ the same as DBCLuC in terms

of the results produced.

4.2.2 Density-Based Concepts for Polygons

Polygons are fundamentally different from points in that they are spread out in space, and factors

that would have no effect on points—such as topology, shape and direction—have great influence

on polygonal datasets. Also, if the polygons share boundaries, then two polygons sharing a larger

extent of their boundary should be considered closer to each other as compared to two polygons

sharing a very small portion of their boundaries. This conclusion follows from the observation

that the closer the two polygons are to each other, more similar they will be in their characteristics

(Poone, 1997). As a result of these factors, some of the density-based concepts for points do not

directly apply to polygons. Mainly, the concept of a core polygon and its neighborhood are fun-

damentally different from that of a core point. Once a core polygon is defined, and the polygons

that belong to its neighborhood, the same concepts of directly-density reachable, density-

reachable, and density-connected for points can then be applied to polygons. The following densi-

ty-based concepts for polygons have been defined in (Joshi, Samal, & Soh, Density-Based

Clustering of Polygons, 2009b) and are reproduced here for completeness and reference, especial-

ly needed when we discuss P-DBSCAN+ in Section 4.3.

[Definition 1] ε-neighborhood of a Polygon: The -neighborhood of a polygon p, de-

noted by)(pN
, is defined by),(|)(qpdistDqpN , where D is the data set of poly-

gons, and dist(p,q) is defined as the geographic distance between polygons p and q which may be

computed using the distance functions such as the Hausdorff distance function or the Euclidean

distance function.

www.manaraa.com

75

[Definition 2] Radial Spatial Neighborhood of a Polygon: The neighborhood of a po-

lygon can be further partitioned into sectors. That is,
R

i i pNpN
1 ,)()(

 such that R is the num-

ber of equal-size sectors radially partitioning the space around the polygon p. The definition of

)(, pN i
extends directly from the ε-neighborhood of the polygon, but only looks at the sector in-

dexed by i. Figure 27 shows an example of the radial spatial neighborhood of the polygon p

(shaded).

The radial spatial neighborhood of polygon p in Figure 27 is divided into 8 sectors:

S1,…,S8. As shown in Figure 27, cbpN ,)(3,
 . Thus gfedcbapN

R

i i ,,,,,,)(
1 ,

 which is

the same as)(pN
.

Figure 27: Radial spatial partitions of a polygon‘s neighborhood. Note that here the first sector is as

shown, and the ordering is clockwise. This is arbitrary for illustration purpose.

[Definition 3] Core Polygon: A core polygon c is defined as a polygon that has at least a

minimum number of polygons (MinPolys) within its ε-neighborhood, and there are at least a

minimum number of radial spatial partitions (MinS) that are non-empty, i.e.

 MinScNCount i

R

i)((,1
 . For example, in Figure 28, if =1, MinPolys = 4 and MinS = 8, p, o

and q are core polygons.

[Definition 4] Border Polygon: A border polygon b is defined as a polygon that has

more than R-MinS of its radial spatial partitions empty, i.e. MinSRbNCount i

R

i)((,1
 ,

www.manaraa.com

76

where R is the total number of partitions. For example, in Figure 28 with =1, MinPolys = 4 and

R = 8, and MinS = 8, b is a border polygon, since 6)((,1 bNCount i

R

i
and 0MinSR .

Figure 28: Synthetic set of polygons (Red – Core Polygon, Green - -neighborhood of the core polygons)

[Definition 5] Outlier Polygon: An outlier polygon is defined as a polygon that does not

have any polygons within the threshold distance of .

[Definition 6] Directly Density-Reachable: A polygon p is directly density-reachable

from a polygon q wrt , MinPoly, and MinS if

1))(qNp and

2) q is a core polygon.

Directly density-reachable is symmetric for pairs of core polygons. In general, however,

it is not symmetric if one core polygon and one border polygon are involved. For example, in

Figure 28 polygon a is directly density-reachable from the polygon p, however polygon p is not

directly density-reachable from the polygon a.

[Definition 7] Density-Reachable: A polygon p is density-reachable from a polygon q if

there is a chain of polygons p1,…pn where p1 = q and pn = p such that pi+1 is directly density-

reachable from pi where {i = 1 to n-1}. In Figure 28 polygon p is density-reachable from polygon

q.

[Definition 8] Density-Connected: A polygon p is density connected to a polygon q if

there is a polygon o such that both, p and q are density-reachable from o. In Figure 28, polygon a

www.manaraa.com

77

and polygon b are density-reachable from polygon o, and thus are density-connected to each oth-

er.

[Definition 9] Cluster: A cluster C wrt. , MinPoly, and MinS is a non-empty subset of

D satisfying the following conditions:

1) Maximality: ,,|, DqCpqp q is density-reachable from p, then Cq .

2) Connectivity: pCqp :, is density-connected to q.

4.3 Density-Based Clustering in the Presence of Obstacles

In this chapter we consider a set of polygons that have a set of obstacles present within the poly-

gon cover. The goal is to detect density-based polygonal clusters in the presence of the obstacles.

The main difference between the polygonal dataset and the point dataset is that the obstacles al-

ways lie exterior to the points while in the case of the polygons, the obstacles may lie within the

polygons themselves, and may even be shared by two or more polygons. Thus while it is rela-

tively simple to define the visibility relationship between two points—they are either visible to

each, or they are not—such is not the case with polygons. Depending on the location of the ob-

stacles, two polygons may only be partially visible to each other. In this chapter, we present a

framework to model the polygons and the obstacles such that the visibility relationship between

the polygons can be correctly detected, and the distance between the polygons can be accurately

computed.

4.3.1 Preliminaries

Obstacles: Obstacles are defined as objects that serve as obstructions, and do not allow a path to

be drawn across their body. In the literature obstacles are represented as polygons (Sack &

Urrutia, 2000). However, in the real world there may be obstacles that do not have a polygonal

shape, and instead may be a point or a linear feature instead. Examples of point obstacles include

police stations, construction sites and accident sites. Examples of linear obstacles include rivers

www.manaraa.com

78

and railroad tracks. Examples of polygon obstacles include lakes, mountains and parks. We fur-

ther take into account the area around the obstacle where the influence of the obstacle extends

enough to make it impassable as well except along the border. We define this area as the zone of

influence of the obstacle. For example, the immediate area around an accident site is also closed

off to public access. This converts the point obstacle to a polygonal obstacle represented as a rec-

tangle in our current framework. Furthermore, for linear obstacles such as rivers, a road cannot

be constructed right at the banks of the river. A river flooding zone is designated and left as a gap

between the road and the buffer. Taking this area into account, a river is converted into a long

rectilinear polygon. In order to have a uniform representation of the different types of obstacles

we model the zone of influence as a rectangular buffer area around an obstacle. Thus, in this

framework each obstacle is represented as a polygon.

Visibility Graph of a Polygon: In computational geometry a visibility graph is defined as

a graph whose nodes are the vertices of a polygon P and whose edges join pairs of vertices for

which the corresponding line segment lies inside P (Sack & Urrutia, 2000). For convex polygons

this will be a complete graph. However, more generally, there can be obstacles, sometimes called

holes or islands (Kitzinger, 2003). The edges of the visibility graph in this case are represented

between any two vertices if there are no obstacles present between them. For example, Figure 29

shows the visibility graph for the polygon P that has two obstacles O1 and O2 within its body.

Figure 29: Sample visibility graph for a single polygon. O1 and O2 are obstacles while the lines constitute the vi-

sibility graph.

www.manaraa.com

79

Polygonal s-t path: A polygonal s-t path between two vertices of the polygonal dataset is

defined as a path from vertex s to vertex t consisting of a finite number of edges Eee u ,...,1

joining a sequence of vertices Vvv w ,...,1
.

Visibility Graph for a set of polygons in the presence of a set of obstacles: The visibili-

ty graph for a set of polygons },...,{ 1 xppP in the presence of a set of obstacles },...,{ 1 yooO is

defined as a graph),(EVVG where V represents the set of vertices of the polygons and the ob-

stacles, and E is the set of edges which are defined by joining pairs of vertices such that

1) The edge Eei does not intersect any obstacle, i.e Oei
.

2) The edges E lie within the polygon cover.

Figure 30 demonstrates an example of a visibility graph for a set of spatially contiguous

polygons with a set of different types of obstacles. The red polygons, line, and point form differ-

ent types of obstacles. The yellow buffer zones around each obstacle are the zones of influence of

the obstacles respectively.

Note that this representation of an obstacle as a rectangle is only for convenience. A more

appropriate representation would involve gradation in the degree of ―obstruction‖ as one moves

away from the center of the zone of influence. And as a result, that would also imply the visibili-

ty, as defined later, between two polygons through this zone can have different values depending

on where the s-t path cuts across the zone. This will be a part of our future work.

Figure 30: Sample visibility graph for a set of polygons in the presence of obstacles. The purple-outlined rectan-

gles are polygons, the red polygons are obstacles with yellow-highlighted zones of influence, and the blue lines consti-

tute the visibility graph.

www.manaraa.com

80

Shortest s-t path length between two vertices: Each edge within the visibility graph

),(EVVG is assigned a weight equal to the length of the edge. In order to find the shortest s-t

path length between any two vertices the Dijkstra‘s algorithm (Dijkstra, 1959) is applied on the

visibility graph.

Reachability of a pair of vertices: A vertex vi is said to be reachable from a vertex vj,

)),((ji vvreachable , if there exists an s-t path between the vertices vi and vj in the visibility

graph),(EVVG .

Visibility between polygons: Now, we further define the visibility relationship between

polygon A and polygon B based on the reachability of the vertices of polygon A (VA) with respect

to the vertices of Polygon B (VB), and vice versa. First, we define three basic types of visibility

relationship between two polygons A and B:

1) Complete Visibility – If all the vertices of polygon A are reachable from all the vertices of

the polygon B, and vice versa, then polygons A and B are said to be completely visible to

each other (Figure 31). That is,),(, bapathtsVbVa BA .

Figure 31: Polygons A & B are completely visible to each other

2) Partial-Visibility – If there exists at least one vertex of polygon A or polygon B that is not

reachable from at least one vertex of polygon B or polygon A respectively, then the two po-

lygons are said to be partially visible to each other.

i. Type A – All the vertices of polygon A are reachable from a subset of the vertices of

polygon B whereas not all vertices of polygon B are reachable from all the vertices of

polygon A (Figure 32). That is,),(.. bapathtstsVbVa BA and

AB VabapathtstsVb),,(.. .

www.manaraa.com

81

Figure 32: Polygon A and Polygon B are partially visible to each other under Type A partial visibility

ii. Type B – At least one vertex of polygon A is reachable from at least one vertex of

polygon B, and vice versa (Figure 33). That is,),(.., bapathtstsVbVa BA

Figure 33: Polygon A and Polygon B are partially visible to each other under Type B partial visibility

3) Invisible – None of the vertices of Polygon A are reachable from any of the vertices of Po-

lygon B, and vice versa (Figure 34). That is,),(, bapathtsVbVa BA .

Figure 34: Polygon A and Polygon B are invisible to each other

Degree of Visibility: The number or the count of vertices of polygon A visible to any ver-

tex of polygon B (vi) is represented as),(Avcount i
. Furthermore, due to the presence of obstacles

the),(Avcount i
 may be different for each vertex of the polygon B. The maximum number of

vertices of Polygon A visible to any vertex of polygon B is thus represented as

)),((max Avcount iVv Bi
.

A

iVv

V

Avcount
BAVisibility Bi

)),((max
)(

B

jVv

V

Bvcount
ABVisibility

Aj
)),((max

)(

2

)()(
),(),(

ABVisibilityBAVisibility
BAVisibilityBAVisbilityofDegree

www.manaraa.com

82

 While the relationship),(BAVisibility is a symmetric relationship between the two poly-

gons A and B, it is not a transitive relationship as it strictly depends on the visibility of the vertic-

es of the two polygons. For example, for the polygons A and B shown in Figure 32, the degree of

visibility is computed as follows:

1
4

4
)(BAVisibility

1
4

4
)(ABVisibility

1
2

11
),(

BAVisibility

For the polygons A and B shown in Figure 33, the degree of visibility is computed as fol-

lows:

 1
4

4
)(BAVisibility

5.0
4

2
)(ABVisibility

75.0
2

5.01
),(

BAVisibility

It should be noted that the degree of visibility of two polygons can also be based on area

using the ratio of the visible area of a polygon to the total area of the polygon instead of using

only the vertices of the polygons.

4.3.2 Distance Function for Polygons in the Presence of Obstacles

Once the visibility graph (VG) has been defined for the polygonal dataset in the presence of the

given set of obstacles, the rest of the processing is performed using the shortest s-t path length

between the vertices of the polygons computed using the visibility graph. Let polygon A be

represented by a set of vertices VA = {v1,…,vn}, and polygon B be represented by a set of vertices

VB = {v1,…,vm}.

www.manaraa.com

83

The next step is to compute the pair-wise obstructed distance between the polygons with-

in the dataset. In order to compute this distance we present a modified form of Hausdorff dis-

tance function that we term as the obstructed Hausdorff distance (OHD). For the two polygons A

and B, the OHD (dh-ob) is defined as follows:

)),(),,(max(),(ABhBAhobh VVDVVDBAd
 (1)

where the Hausdorff distance function)),((BADh
 is computed as follows:

)),((minmax),(badVVD VGVbVaBAh BA (2)

where),(badVG
 is the shortest s-t path length between the vertices a and b in VG com-

puted using the Dijkstra‘s algorithm.

Intuitively, we expect the distance between two polygons with shared boundary to be

less. However, the standard Hausdorff distance is defined on the set of points and does not incor-

porate any sharing of the boundary. In order to incorporate this, we define a new distance meas-

ure, called the boundary adjusted obstructed Hausdorff distance)('obh
d

, that is inversely propor-

tional to the length of the shared boundary between the two polygons, between two polygons A

and B as follows:

),()
2

1(),(' BAd
SS

S
BAd h

BA

AB

obh

 (3)

where hd is the obstructed Hausdorff distance function defined in Equation 1,
AS and

BS are the perimeter lengths of polygons A and B respectively, and
ABS is the length of their

shared boundary. This distance, 'obh
d

, is smaller than the standard Hausdorff distance when

two polygons have shared boundary, and becomes the standard Hausdorff distance when two po-

lygons have no shared boundary, i.e., when ABS = 0. We use twice the shared distance in the de-

finition to balance the effect of the denominator. This transformation of the Hausdorff Distance

www.manaraa.com

84

function to incorporate the shared boundary length between two polygons has been previously

successfully used in clustering polygons in (Joshi, Samal, & Soh, A Dissimilarity Function for

Clustering Geospatial Polygons, 2009a) and (Joshi, Samal, & Soh, Density-Based Clustering of

Polygons, 2009b).

4.3.3 Density-Based Concepts for Polygons in the Presence of Obstacles

While most of the density-based concepts for polygons presented in Section 4.2 still hold true in

the presence of obstacles, some changes need to be made in the framework to take into account

the visibility relationship between polygons. We have redefined the - neighborhood of a poly-

gon to accommodate the visibility properties. The new definition is presented below.

[Definition 1’] Obstructed - neighborhood of a polygon: The obstructed - neighbor-

hood of a polygon p denoted by)(pN ob
, is defined by

10,),(),(|{)(qpVisibilityandqpdDqpN obhob
, where D is the data set

of polygons, and are user-defined parameters, and),(qpd obh
is the obstructed Hausdorff dis-

tance function between polygons p and q, and is defined in Section 4.3.3.

[Definition 2’ to 8’] Given the new obstructed - neighborhood of a polygon, the defini-

tions [Definition 2’ to 8’] for density-based concepts for polygons in the presence of obstacles

remain the same as [Definitions 2 to 8] with the replacement of)(pN
with)(pN ob

.

However, since the density-connectivity relationships are all transitive in nature, and the

visibility relationship between the polygons is not transitive between polygons, we need a new

concept to capture visibility-connectedness for polygons defined as follows:

[Definition 9’] Visibility-connectedness: Two polygons p and q are said to be visibility-

connected if the),(qpVisbilityofDegree , where is a user defined parameter.

[Definition 10’] Density-connected Cluster of polygons in the presence of obstacles: A

cluster C wrt. and is a non-empty subset of D satisfying the following conditions:

www.manaraa.com

85

1) Maximality: DqCpqp ,|, if q is density-reachable from p, then Cq .

2) Connectivity: Cqp , , p is density-connected to q.

3) Visibility: Cqp , , p is visibility-connected to q.

4.3.4 P-DBSCAN+ Algorithm

In order to detect density-connected clusters of polygons in the presence of obstacles, we first

need to pre-process the dataset using the Pre-Processing module shown in Figure 35, and then

apply the P-DBSCAN+ algorithm shown in Figure 36. The Pre-Processing module first forms the

visibility graph for the polygons being clustered in the presence of the given set of obstacles, and

then computes the pair-wise obstructed distance between all the polygons in the given dataset.

This pair-wise distance is stored in a text file which becomes an input to the P-DBSCAN+ algo-

rithm.

P-DBSCAN+ follows an underlying process similar to DBSCAN. Cluster ID (CID) is

generated, and assigned the value 1. A polygon p is selected randomly from the set of polygons P

and checked to see if it has been assigned to a cluster already. If p has not been assigned to a

cluster, then the ExpandCluster routine is called. As in DBSCAN, ExpandCluster is where the

cluster assignments are done.

The ExpandCluster routine checks to see whether p is a core polygon (cf., Definition 3‘).

For this, it first computes p‘s obstructed - neighborhood)(pN ob
 (cf., Definition 1‘). Next, if

the)(pN ob
 contains at least MinPoly polygons and they cover at least MinS radial spatial parti-

tions of the polygon (cf., Definition 2‘), then p is classified as a core polygon. Next, p is assigned

to the cluster CID if),(, qpVisibilityofDegreeCq CID
. Followed by which, the Ex-

pandCluster routine is called recursively for each of the neighbors of polygon p. Figure 36

presents our proposed P-DBSCAN+ Algorithm.

www.manaraa.com

86

Figure 35: Pre-Processing algorithm.

Figure 36: P-DBSCAN+ clustering algorithm.

4.3.5 Computational Complexity of P-DBSCAN+

The computational complexity of pre-PDBSCAN+ is O(n
2
) as all the three steps of the algorithm

– construction of visibility graph, finding shortest path lengths using Dijkstra‘s algorithm, and

P-DBSCAN+

Input: P,,,MinPoly, MinS, Pair-wise
boundary adjusted Obstructed Hausdorff
Distances for P
Output: Set of Clusters
Set CID = 1
For each polygon p in P

If ClusterID(p) is UNCLASSIFIED then
Call ExpandCluster
If ExpandCluster then

Increment CID

End If
End If

End For

ExpandCluster

Input: p, CID, , , MinPoly, MinS
Output: True or False

If p is surrounded by polygons in at least MinS radial
spatial partitions then

)(pN ob
= Get the obstructed ε-Neighborhood of p.

For each pn in)(pN ob

If),(ppnVisibilityofDegree

Remove pn from)(pN ob

End if
End for

If)(pN ob
 contains at least MinPoly polygons then

If),(, qpVisibilityofDegreeCq CID

Set the ClusterID of p to CID

For each pn in)(pN ob

Call ExpandCluster (pn, CID, , , MinPoly,
MinS)
End For
Return True.

Else return False.
End IF

Else return False.
End IF

Else return False.
End If

Pre-Processing

Input Set of Polygons P, Set of Obstacles O

Output: Pair-wise boundary adjusted Obstructed Hausdorff Distances for P
Construct the visibility graph VG for P taking O into account as follows:

jiandVvorVvandVvorVvtsvv OjpjOiPiji .., add an edge from

vi to vj to VG if:

1) Ovv ji),(.

2)),(ji vv lies within the polygon cover P.

For each pair of vertices in VG, compute the shortest s-t path length using the Dijkstra’s al-
gorithm.
For each pair of polygons in P compute the pair-wise boundary adjusted Obstructed Haus-
dorff Distance using the formula presented in Section 3.2.

www.manaraa.com

87

computation of pair-wise boundary adjusted obstructed Hausdorff distance for the polygons in the

dataset – require O(n
2
) number of computations, where n is the number of vertices of the poly-

gons. In order to reduce the computational complexity it is important to reduce the vertices of the

polygons. In many practical applications, the number of vertices of polygons can be greatly re-

duced without compromise in the quality of data using the Douglas-Peucker polygon simplifica-

tion algorithm (Peucker & Douglas, 1975) is used. For example, Figure 37(a) shows the census

tracts for the city of Lincoln, Nebraska. Originally, the dataset has 55 polygons and the total

number of vertices of all the polygons is 1211. After the application of the Douglas-Peucker algo-

rithm the polygons are simplified and have only 408 vertices. The simplified polygons are pre-

sented in Figure 37(b). Furthermore, an optimized version of the Dijkstra‘s algorithm can be

used.

With the pair-wise boundary adjusted obstructed Hausdorff distance for the polygons pre-

computed, and with the use of an indexing structure such as a R*-tree, the computational com-

plexity of P-DBSCAN+ will be the same as that of DBSCAN, i.e. O(n log n).

4.3.6 P-DBSCAN++

In this section we propose an alternate version of the P-DBSCAN+ algorithm that allows the user

to detect strong clusters first, i.e. clusters with degree of visibility 1.0, followed by the detection

of weak clusters, i.e. clusters with degree of visibility between 0 and 1. The core algorithm re-

mains the same as P-DBSCAN+ (Figure 36). The idea is to first apply P-DBSCAN+ with = 1.0.

The user is not given an option here to select an alternate . Once the results are obtained for the

first application of P-DBSCAN+, the user is now allowed to select any , and re-apply P-

DBSCAN+ on the polygons that were not assigned to any cluster previously. Thus the second

iteration of P-DBSCAN+ with a weaker will allow the user to detect weaker clusters. Using

www.manaraa.com

88

this approach we give the user the freedom to detect the maximum number of clusters while still

retaining some clusters with visibility 1.0.

(a)

(b)

Figure 37: (a) Lincoln, NE census tracts – 55 polygons with 1211 vertices. (b) Simplified Lincoln, NE census tracts

using the Douglas-Peucker algorithm – 55 polygons with 408 vertices.

4.4 Experimental Analysis

In this section we describe the performance of our algorithm P-DBSCAN+ on a synthetic dataset

for 110 polygons and on a real dataset comprising of the census tracts of Lincoln, NE. Obstacles

have been added to both the datasets. We also compare the results obtained by P-DBSCAN+ with

the results of P-DBSCAN and DBCLuC. P-DBSCAN is the parent algorithm of P-DBSCAN+ in

the sense that it does not handle obstacles as constraints. The reason for this comparison is to

show the importance of taking the obstacles into consideration while forming clusters of spatial

www.manaraa.com

89

polygons. DBCLuC, on the other hand, is a density-based clustering algorithm for point datasets

in the presence of obstacles. As the case of partial visibility does not exist in point datasets,

DBCLuC cannot handle with such cases.

4.4.1 Experiment with Synthetic Dataset

For the first set of experiments, we use a synthetic dataset of 110 polygons and 5 obstacles (Fig-

ure 38). As described before, all the obstacles (polygons, lines and points) are represented by tak-

ing their zone of influence into account and hence are polygons in our approach.

First, P-DBSCAN clusters polygons based on the input parameters of , MinPoly, and

MinS without taking into account the obstacles that may be present. Thus with a large enough

(e.g., = 200), we find that all the polygons get clustered together as shown in Figure 39.

DBCLuC, on the other hand, takes a point representation of the polygons. We use the

most rudimentary representation of a polygon as a point, i.e. the centroid of each polygon. Fur-

thermore, the point-based clustering approaches only detect whether two points are visible to each

other or not before clustering them together. Thus, applying DBCLuC to our synthetic dataset,

once again with a large enough (e.g., = 200) we find that the polygons get split into two clusters

(Figure 40) where none of the clusters are strong clusters, i.e. the overall degree of visibility for

both the clusters is less than 1.0.

Next, we apply P-DBSCAN+ to the synthetic dataset. P-DBSCAN+ clusters polygons

based on the input parameters of , , MinPoly, and MinS. The input parameter plays a key role

here and allows the user to control the purity of visibility within the clusters. Thus, if = 1.0 and

 = 200 the result obtained by P-DBSCAN+ will be two clusters with a set of polygons all sharing

the linear feature detected as outliers (Figure 41). The two clusters detected have the overall de-

gree of visibility of 1.0. It should be noted that DBCLuC or any other point-based clustering al-

gorithm will never be able to detect the outliers as found by P-DBSCAN+.

www.manaraa.com

90

Finally, if we are to apply P-DBSCAN++ to the synthetic dataset where the first iteration

is done with = 1.0 and the second iteration is done with = 0.5, we find that three clusters are

detected (Figure 42). While the two clusters detected in the first iteration are the same as the ones

detected previously with overall degree of visibility of 1.0, the third cluster detected is composed

of the polygons that share the linear obstacle and were previously classified as outliers.

Figure 38: Synthetic dataset with 110 polygons and 5 obstacles

Figure 39: Result of clustering using P-DBSCAN, i.e. without taking the obstacles into consideration = 200

Figure 40: Result of clustering using DBCLuC with = 200.

Figure 41: Result of clustering using P-DBSCAN+ with = 200 and. = 1.0

www.manaraa.com

91

Figure 42: Result of clustering using P-DBSCAN++ with = 200 and = 1.0, 0.5

4.4.2 Experiment with Lincoln Census Tract Dataset

For the second set of experiments, we use the census tract dataset for the city of Lincoln, NE. The

dataset consists of 54 polygons and 3 obstacles. The obstacles are in the form of a rail road track,

a stream, and a park (Figure 43). The zone of influence is the buffer area around each obstacle

where its influence is extended. Taking the zone of influence of each obstacle following the ap-

proach described earlier in Section 4.3.1, the new representation of the obstacles is shown in Fig-

ure 44.

Figure 43: Census tract dataset of the city of Lincoln, NE with 55 polygons and 3 obstacles.

Figure 44: Census tract dataset of the city of Lincoln, NE with obstacles modeled as rectangular polygons

www.manaraa.com

92

The clustering together of census tracts in the presence of obstacles makes sense because

for certain applications. For example, when determining location of ambulance services to guar-

antee service time, one must account for the railroad tracks since the crossings may be blocked.

We applied both DBCLuC and P-DBSCAN+ to this dataset. The result obtained by the DBCLuC

algorithm is shown in Figure 45. As mentioned before, DBCLuC is a point-based clustering al-

gorithm; thus, we represent the polygons by their centroids, i.e., points, for DBCLuC. Once

again, as the case of partial visibility does not exist among points, the clusters were formed with-

out taking into consideration that while the centroid may be visible to the centroid of another po-

lygon, when in fact the entire polygon is not visible. Thus, the final clusters produced have poly-

gons as their members that were being cut through by the obstacles leaving some portions of

these polygons completely invisible to the rest of the cluster. Therefore, not every polygon is

completely visible to every other polygon within the same cluster.

Figure 45: Result of clustering using DBCLuC.

The result obtained by P-DBSCAN+ is shown in Figure 46. P-DBSCAN+ is well

equipped to handle cases of partial visibility and therefore successfully detects clusters with

where every polygon is completely visible to every other polygon within the same cluster. Fur-

thermore, it can be seen that in comparison to the results obtained based on the point representa-

tion of the polygons, our approach does a better job at detecting the density-based clusters. In

Figure 44, the large inverted L-shaped polygon at the right end of the dataset is added to the same

www.manaraa.com

93

cluster as the other smaller polygons towards its left. This is because the centroid distance be-

tween the polygons was small. However, by computing the distance using our proposed distance

function, this polygon is no longer clustered together with the smaller polygons as can be seen in

Figure 45. It is important to note that for real geographic datasets, in order to detect clusters that

may be formed due to some linear feature, the input parameter of MinS provided to P-DBSCAN+

should be set to 1 or a maximum of 2. This is because for a cluster that is linear in shape, the core

polygons will not be surrounded by polygons in every radial spatial partition.

Finally, when we apply P-DBSCAN++ to this dataset, the result obtained is shown in

Figure 47. It can be observed that two more clusters are added to the total number of clusters

originally detected by P-DBSCAN+. These two clusters are unique because they are composed

of polygons that share the same obstacles respectively. Having such clusters can provide further

insight to the decision makers in practical applications to assign these polygons to the appropriate

clusters. For example, one could argue that all the census tracts surrounding the railroad should

be clustered as one because they share the same characteristics with respect to the railroad, in a

way analogous to how watershed areas are clustered along a river. Another alternative would be

to split each of these polygons into two or more smaller polygons so that each portion can be des-

ignated to the appropriate cluster so that every polygon is completely visible to every other poly-

gon within the same cluster. Finally, the large polygon (with no color, to the right of the map) is

left out as an outlier that may be assigned to a cluster of its own.

www.manaraa.com

94

Figure 46: Result of clustering using P-DBSCAN+ with = 1.0

Figure 47: Result of clustering using P-DBSCAN++ with = 1.0, 0.5

4.5 Conclusion and Future Work

In this chapter, we have proposed our research and investigation into spatial clustering of poly-

gons in the presence of obstacles. First, we have defined there types of visibility relationship be-

tween two polygons: complete visibility, partially visibility, or invisibility. We have also defined

the degree of visibility between two polygons that quantifies the visibility relationship in the

presence of obstacles. Using the visibility relationship, we have extended the P-DBSCAN algo-

rithm to the P-DBSCAN+ algorithm that clusters polygons in the presence of obstacles. We have

also proposed a variant P-DBSCAN++ that allows clusters of complete visibility and partial visi-

bility to be detected. Our experiments compared our algorithms with the point-based, density-

www.manaraa.com

95

based DBCLuC algorithm in a synthetic dataset and a real-world census tract dataset. We have

demonstrated that, from the results, both P-DBSCAN+ and its variant are able to handle obstacles

well while the variant P-DBSCAN++ is able to provide a more ―complete‖ clustering by also de-

tecting weaker clusters. Both algorithms are also better than DBCLuC, while more studies will

need to be conducted to ascertain the validity of our results with full confidence.

So far we have applied our algorithm to a set of spatially contiguous polygons. The algo-

rithm and the pre-processing of the data may easily be extended to a set of non-contiguous poly-

gons by drawing the visibility graph for each individual polygon, and in order to find the distance

in between the polygons, we simply find the Euclidean distance between the vertices.

We have treated obstacles as impassable zones in this chapter unless there is a facilitator

present that allows one to define a path through the obstacle. However, in many cases one may

cross through an obstacle such as a mountain or a lake with additional cost. As part of our future

work, we will define a new distance function that takes into consideration this cost function for

the various obstacles. Furthermore, based on the different types of obstacles the weight of the

cost function will be varied as it may be easier to go through one type of obstacle as compared to

another. We will also take into account the gradation in the degree of ―obstruction‖ as one moves

away from the center of the zone of influence. And as a result, that would also imply the visibili-

ty, between two polygons through this zone, can have different values depending on where the s-t

path cuts across the zone.

In addition to obstacles, another category of objects may be present within the dataset

that may influence the result of the proximity-based or density-based clustering algorithms.

These are known as facilitators. Facilitators are objects that help in reducing the distance be-

tween two spatial objects, and therefore making them closer to each other. Examples of facilita-

tors include highways, bridges, etc. Thus while the obstacles may split a cluster into two or more

smaller clusters, the presence of facilitators may lead to the unification of two or more smaller

www.manaraa.com

96

clusters into a single unified cluster. For example, if there is no path between two polygons be-

cause of the presence of a river between them, both the polygons will belong to different clusters.

However, if a bridge is present on the river connecting the two polygons together, they may now

belong to the same cluster. We also plan to include the facilitators within our framework.

Publications

This chapter appears in the following:

1. Joshi, D., Samal, A., & Soh, L-. K. (under preparation). Polygonal Spatial clustering in the

Presence of Obstacles and Facilitators, to be submitted to Transactions in GIS.

www.manaraa.com

97

Chapter 5: Constraint-Based Clustering of Polygons

5.1 Introduction

Redistricting is the process of dividing a geographic space or region of spatial units often

represented as polygons into smaller subregions or districts. In other words, it can be viewed as a

set partitioning problem, i.e. the problem is to cluster the entire set of spatial polygons into groups

such that a value function is maximized (Altman, 2001). Because of the spatial properties in-

volved, redistricting is akin to spatial clustering. At the same time, as the most common use of

these districts is to facilitate some form of jurisdiction, redistricting often involves satisfying or

conforming to constraints that represent policies, laws and regulations. Typical spatially-flavored

constraints are spatial contiguity and compactness, while an example of domain-specific con-

straint is uniform population (or resource) distribution.

Spatial clustering deals with spatial data that is generally organized in the form of a set of

points or polygons. Most spatial clustering algorithms proposed in the literature focus on cluster-

ing point data (Han, Kamber, & Tung, Spatial clustering methods in data mining: A Survey,

2001). However, when applying these algorithms to cluster polygons instead of points, these al-

gorithms fall short of giving accurate results (Joshi, Samal, & Soh, Density-Based Clustering of

Polygons, 2009b). The main cause of the inadequacy is that in comparison to polygons, points

are relatively simpler geographic objects. Polygons, especially in the geographic space, share

spatial and topological relationships and cannot be accurately represented as points. For example,

two polygons may share boundaries with each other, or may cover different amounts of area.

None of these conditions can be captured in point datasets. Redistricting is thus a polygonal spa-

tial clustering problem as most of the space around us is divided into polygons, e.g. states, coun-

ties, census tracts, blocks, etc.

Furthermore, while clustering is a form of unsupervised learning, redistricting requires

the use of some form of domain knowledge. Efficient use of this available information during the

www.manaraa.com

98

process of clustering can significantly enhance the quality of the clusters. Use of constraints in

clustering is widely examined in data mining. Examples of constraint-based clustering algo-

rithms are COP-KMEANS (Wagstaff, Cardie, Rogers, & Schroedl, 2001), C-DBSCAN (Ruiz,

Spiliopoulou, & Ruiz, 2007), etc. However, these algorithms are all point-based. Constraints ap-

plied during the process of clustering can be of two types – instance-level constraints and cluster-

level constraints. Instance-level constraints are applied to individual objects being clustered. Ex-

amples of instance-level constraints are must-link and cannot-link constraints (Davidson & Ravi,

2005). Cluster-level constraints on the other hand, are applied to the cluster as a whole. Exam-

ples of cluster-level constraints are averaging or summation constraints (Davidson & Ravi, 2004).

For example, the sum of the population of a cluster must be less than or equal to . It has been

proven that satisfying such cluster-level constraints in the clustering process is NP-hard (Altman,

2001).

In this chapter we present a suite of clustering algorithms for clustering spatial polygons

in the presence of constraints. The core algorithm, called the Constrained Polygonal Spatial Clus-

tering (CPSC) algorithm, is designed to solve the problem when the constraints are hard and in-

violable. We further propose two extensions of CPSC, namely, CPSC* and CPSC*-PS (i.e.

CPSC* with Polygon Split). CPSC* is designed to handle soft constraints, while CPSC*-PS is a

further extension to allow a polygon to be split during the clustering process using an underlying

tessellation in order to improve the quality of the clustering results. The uniqueness of these al-

gorithms is that they make use of the spatial and topological relationships between the polygons

as well as the domain knowledge present in the form of constraints to cluster polygons using an

A* search-like underlying process. Briefly, the core algorithm CPSC is divided into three main

steps: 1) select seeds, 2) decide the best cluster to grow, and 3) select the best polygon to be add-

ed to the best cluster. Several novel strategies of the algorithm include:

www.manaraa.com

99

 Use of heuristic functions to apply the constraints during clustering. A heuristic function

has two components: (1) the distance function that measures the distance of the current

state of the cluster from the desired goal, and (2) the cost function that measures the re-

duction in the flexibility of the growth of all the other clusters. The use of these heuristic

functions facilitates efficient use of agglomerative type cluster-level constraints.

 Integration of constraints in seed selection. Instance-level and cluster-level constraints from

the domain are used from the outset in seed selection. By applying the constraints and select-

ing the seeds using the heuristic functions we make the algorithm more robust to order de-

pendency and poor initial seeding.

 Selection of the best cluster to grow. At the beginning of each iteration CPSC selects the best

cluster to grow based on the heuristic function () that approximates the level of ―need-to-

grow‖ for each cluster; that is, the cluster with the greatest need is selected to be grown next.

 Selection of the best polygon to be added to the best polygon. Once the best cluster has been

selected to grow, the best polygon in terms of the level of ―reduction of flexibility‖ is selected

using the heuristic function ; that is, the polygon with minimal impact on the growth of sur-

rounding clusters is chosen to be added to the best cluster.

 The polygons are allowed to move from one cluster to another. As the growth process of a

cluster follows a greedy approach, every cluster selects the polygon that minimizes its need at

that stage. A cluster may decide that the polygon which has already been assigned to another

polygon is the best polygon that meets its need. The move of the polygon from its original

cluster to the new cluster is allowed by CPSC in the special case when a new cluster has no

unassigned polygon present in its neighborhood.

Based on the same underlying process as CPSC, CPSC* finds a solution by allowing the

user to prioritize the constraints. Further, it relaxes the constraints to allow un-clustered polygons

to be assigned to clusters even though they would have violated the original constraints. CPSC*

www.manaraa.com

100

also has a deadlock detection and breaking mechanism that ensures convergence of the algorithm.

CPSC*-PS (i.e., with polygon split) further improves the quality of the clusters produced by

CPSC*. It uses the underlying structure within each polygon to split it into smaller polygons,

which can then be assigned to different clusters, thus taking the clusters produced by CPSC* a

step closer to the desired target state.

For our comparative and validation study, we apply the CPSC suite to two widely used

redistricting problems: congressional redistricting and formation of school districts. We compare

the results of CPSC for the congressional redistricting problem with three other techniques based

on graph partitioning (Bodin, 1973), simulated annealing (Macmillan, 2001), and genetic-based

algorithms (Bacao, Lobo, & Painho, 2005). Congressional redistricting has been inflicted tradi-

tionally with issues such as Gerrymandering (Hayes, 1996) and unequal population distribution.

In our study, we find that our algorithm outperforms the other three algorithms by producing dis-

tricts that have almost equal population and are spatially compact. We then applied CPSC* to the

problem of school districting which is a task that is frequently performed to assess the distribution

of resources and delegation of authority. Finally, in order to validate the CPSC*-PS algorithm, we

have applied it to a sample dataset.

The chapter is organized as follows. 5. 2 discusses other redistricting algorithms. Sec-

tion 5.3 presents the CPSC algorithm, and its two extensions. Section 5.4 describes the applica-

tion domains and implementation of the CPSC algorithm suite in each domain. Section 5.5 cov-

ers the experimental analysis of our algorithms. Finally Section 5.6 gives our conclusions and the

directions for future work.

5.2 Related Work

Redistricting is essentially an optimization problem where the global optimum solution is difficult

to find. This is because the size of the solution space can be enormous. A simple brute force

search through all the possible solutions is impractical especially when the dataset size increases.

www.manaraa.com

101

As a result, the problem of redistricting has been considered to be difficult to solve precisely and

efficiently. Moreover, due to the size of the real datasets, most of the current techniques used for

automated redistricting resort to unproven guesswork (Altman, 2001) and random selection, and

are therefore inefficient and may not be accurate.

Several meta-heuristic approaches have been proposed in the past to solve this problem.

These meta-heuristic approaches are often based on genetic algorithms, simulated annealing, or

graph partitioning techniques. While all of these algorithms work with polygonal datasets, they

do not exploit either the spatial properties of the polygons themselves or the nature of the geo-

graphic space. In this section we give an overview of different approaches that have been imple-

mented to solve redistricting problems. The different approaches discussed here are graph parti-

tioning, simulated annealing and genetic algorithm based redistricting methods. The implementa-

tion of these methods shown here is for the congressional redistricting problem. We have hig-

hlighted their advantages and disadvantages. The results of these algorithms are compared with

CPSC in Section 5.5.1.

5.2.1 Graph Partitioning

The problem of partitioning a geographic area into a collection of contiguous, approximately

equal population districts can be viewed as a graph partitioning problem. The graph is formed by

representing each polygon within the dataset as a node, and the polygons that share boundaries

are connected by an edge. Furthermore, each node is assigned a weight which is equal to the pop-

ulation of the polygon. The problem is now to divide the graph into a fixed number of sub-graphs

or clusters such that the sum of the weights of the nodes within each cluster is equal, and each

cluster is connected. The outline of the graph partitioning algorithm for congressional redistrict-

ing proposed by (Bodin, 1973) is as follows.

A label is assigned to each node in the graph. This label has three components: the clus-

ter number to which the node belongs , the weight of the cluster , and the predecessor of the

www.manaraa.com

102

node in the graph . The weight of the cluster is the sum of the populations of the nodes as-

signed to that cluster. Initially every node is assigned the label – , indicating that the

 , , and the . The seeds of the clusters are selected randomly. Each

seed is assigned to a separate cluster, and its label is changed to where is the cluster

number () and is the population of the seed (). And, as each seed forms the root of

a cluster, it does not have any predecessor. Therefore . Subsequently a pass is made

through all the nodes in the graph and each node is assigned to a cluster based on the weight of

the cluster, where the weight of the cluster is equal to the total population of the cluster, and the

predecessor of the node.

Step 2 of the algorithm takes the clusters produced in Step 1 and improves them by ex-

changing nodes between clusters. Spatial contiguity is preserved during the exchange process.

The advantages of this approach are that it is computationally fast, and it presents the user

with several potentially useful plans. However, there are several disadvantages with this ap-

proach. 1) While this procedure is extremely fast computationally, it does not always terminate at

an optimal solution. 2) The random selection of seeds may lead to the development of poor

plans. 3) There are no guidelines provided in this methodology to select the best plan. 4) This

method does not work well when the number of seeds is large as the total number of plans that

may be produced scales up very fast. 5) There is no intuitive way to incorporate intra-cluster con-

straints during the clustering process.

5.2.2 Simulated Annealing

Simulated Annealing is a general purpose optimization procedure based on the thermodynamic

process of annealing of metals by slow cooling. In the redistricting problem the goal is to draw a

plan such that the user defined constraints, such as equal population, are satisfied. An example of

an algorithm that applies simulated annealing to solve the problem of congressional redistricting

www.manaraa.com

103

is Simulated Annealing Redistricting Algorithm (SARA) (Macmillan, 2001). An outline of the

algorithm is as follows:

1. Select an over-populated cluster as the donor cluster.

2. Choose, among the member polygons of the donor cluster, a polygon to be removed from the

donor cluster.

3. If contiguity of the donor cluster (i.e., the connectedness of all its member polygons) would

be lost by this removal, return to step 2.

4. Select a recipient cluster for the chosen polygon from amongst the neighboring clusters.

5. (a) If the transfer of the selected polygon from the donor cluster to the recipient cluster would

decrease the combined population deviation of the donor and recipient clusters then accept it;

(b) if the transfer would increase the combined population deviation of the donor and reci-

pient clusters then accept it with a probability governed by the size of the deviation and the

value of the temperature parameter.

6. If the transfer is accepted, calculate the new population deviations of the clusters and add one

to the count of successful transfers.

7. If the aggregate population deviation of all clusters is within the target range then stop; oth-

erwise if the numbers of successful and unsuccessful swaps have not been exceeded a thre-

shold then go to Step 1; if the thresholds have been exceeded then reduce the value of the

temperature parameter then go to Step 1.

While simulated annealing based methods perform better than informal or manual me-

thods, they have several disadvantages. 1) An initial solution needs to be provided to the algo-

rithm. 2) The final solution produced is therefore heavily dependent on the initial plan provided

to the algorithm. 3) More than one spatial constraint cannot be easily incorporated in algorithms

such as SARA. 4) There are no guarantees that a global optimum will be found.

www.manaraa.com

104

5.2.3 Genetic Algorithms

Genetic algorithms are a subset of the evolutionary algorithms based on Darwin‘s theory of evo-

lution. The basic idea is that each solution to the problem is coded as a bit string, taken to be a

chromosome, possibly with a number of sub-strings that act as genes. At any given point in time,

a number of such chromosomes are kept where each chromosome represents a solution to the

problem. Natural selection is simulated by evaluating the fitness of each solution, measured by

how well it solves the problem at hand, and giving the best individuals a higher probability of

remaining in the solution pool during the next generation. To obtain new solutions, two operators

are used – crossover and mutation. Crossover is implemented by combining bits of two different

chromosomes to form a new solution. Mutation is implemented by randomly changing some bits

or chromosomes. An application of genetic algorithms to zone designing is given is (Bacao,

Lobo, & Painho, 2005). The algorithm takes as input a point representation of each polygon, and

the number of zones or clusters (). A polygon is represented using its centroid. The algorithm is

defined as follows:

1. Generate a population of size , where each population is a set of points, according to the

selected encoding. Thus each population forms a chromosome representing a possible solu-

tion.

2. Generate a plan for every chromosome within the population, by assigning each of the po-

lygon centroids to the closest centroid within the chromosome.

3. Evaluate the fitness of each plan, based on the chosen fitness function and contiguity check.

4. Apply selection, crossover and mutation operators, creating a new population.

5. Return to Step 2 until the stopping criterion is met.

Given enough time, a global optimum solution may be found by a genetic algorithm.

However, to find a reasonable solution in a reasonable amount of time, care must be taken in en-

coding the solution space into chromosomes. The disadvantages of genetic algorithms are as fol-

www.manaraa.com

105

lows: 1) They need many more function evaluations than linearized methods. 2) A lot of care

needs to be taken while designing the encodings. 3) There is no guaranteed convergence even to a

local minimum. 4) Finally, genetic algorithms cannot be applied to problems where the seeds are

fixed and thus only one chromosome in the initial population pool.

5.2.4 Comparison with the CPSC family

The CPSC family of algorithms addresses several of the disadvantages of the approaches dis-

cussed in Sections 2.1, 2.2. and 2.3. The CPSC family does not require an initial input plan, i.e.,

an initial solution where every polygon is assigned to a district or cluster, to work upon, as is the

case with SARA and the genetic algorithm for zone design. For example, for the congressional

redistricting problem, SARA takes as input a set of districts with every polygon in the dataset as-

signed to a district, which are spatially contiguous but do not satisfy all the constraints such as the

equal population constraint. SARA then improves upon this initial plan so that all the districts

satisfy the constraint of equal population. The genetic algorithm for zone design also follows a

similar approach where it begins with taking a set of input plans. Here again, each input plan is a

possible solution to the congressional redistricting problem where each polygon in the dataset is

assigned to a district. It then evaluates the fitness of each plan, based on the chosen fitness func-

tion and contiguity check, and applies selection, crossover and mutation operators until it finds a

solution that meets the stopping criterion. The CPSC family, on the other hand, selects seeds

from the dataset and then grows the clusters with the seeds as the starting points of the clusters.

The seeds are simply single polygons selected as for growing clusters, and therefore do not con-

stitute an input plan.

The CPSC family also defines a clear methodology to select seeds based on a pre-defined

set of constraints, as opposed to the random selection of seeds by the graph partitioning algo-

rithm. Most importantly, the CPSC family can incorporate any type of spatial or domain-specific

constraints in the clustering process by the use of its heuristic function and other guidelines as

www.manaraa.com

106

defined in Section 5.3, and demonstrated in Section 5.4. There is no intuitive way to incorporate

spatial constraints such as minimum distance between the seed and other polygons within the

cluster within SARA and genetic algorithm. SARA randomly makes its move in order to avoid

local optima; however, it has the risk of getting stuck at the local minima. As the CPSC family

follows the A* search-like mechanism in order to grow the clusters, there is no risk of getting

stuck at the local minima. Finally, CPSC can also easily be modified to work with fixed seeds, i.e.

the seeds of the cluster cannot be changed or moved during the clustering process. A genetic al-

gorithm will not work in this situation as the input population cannot be formed in this case.

5.3 Constrained Polygonal Spatial Clustering Algorithms

The main aim of our Constrained Polygonal Spatial Clustering (CPSC) algorithm is to grow clus-

ters, satisfying constraints that can be used for spatial analysis and map formation. In order to

facilitate the purposes of jurisdiction within a cluster that represents a district, the algorithm is

designed to inherently produce spatially contiguous and compact clusters. This knowledge is

embedded in the clustering process in the form of constraints. Towards this, we make use of the

notions of instance-level constraints, and cluster-level constraints. A description of the different

types of constraints in presented in Section 5.3.1.

Using the constraints mentioned above, the clusters are grown using an iterative search

process. The underlying search algorithm used is A*-like search (Russell & Norvig, 2003). An

outline of the A*-search algorithm has been presented in Section 5.3.1.

5.3.1 Preliminaries

A* Search Algorithm: A* is a best-first search algorithm that finds the least costly path from an

initial node to the goal node. It uses a heuristic function () that is a com-

bination of a path cost function () and an admissible distance function () i.e. a distance

function that does not overestimate the distance to the goal. The path cost function meas-

www.manaraa.com

107

ures the cost of arriving at the current node from the initial node, and the distance function

measures the estimated distance from the current node to the goal node.

 Starting with the initial node, A* maintains a priority queue of nodes to be traversed,

known as the open set, or OPEN. The lower for a given node is, the higher is its priority.

At each step of the algorithm, the node with the lowest value is removed from the OPEN

queue and added to another queue known as the closed set, or CLOSED. The and values of

its neighbors are updated accordingly, and these neighbors, which have not been already added to

OPEN or CLOSED, are added to the OPEN queue. The algorithm continues until a goal node is

discovered (or until the OPEN queue is empty). The value of the goal is then the length of the

shortest path. (Russell & Norvig, 2003). An outline of the algorithm is as follows:

1. Begin with the start node .

2. Put on a queue called OPEN.

3. Create a queue called CLOSED that is initially empty.

4. If OPEN is empty, exit with failure.

5. Remove node having the smallest value from OPEN, and put it on CLOSED.

6. If is a goal node, exit successfully.

7. Expand node , generating the set , of its neighbors.

8. Add the members of not already on OPEN or CLOSED to OPEN.

9. Reorder the list OPEN in order of increasing values.

10. Go to Step 5.

Spatial contiguity: A cluster of polygons is spatially contiguous when every polygon

within the cluster shares at least a part of its boundary with at least one other polygon within the

cluster. In other words, the number of connected components for a spatially contiguous cluster

will always be 1.

www.manaraa.com

108

Cluster compactness: Compactness is most commonly measured as an attribute of the

shape of the cluster. A circle is the most compact shape for any cluster because it covers the most

area within the smallest perimeter (Clayton, 2000). We define a compact cluster as a cluster that

has a shape very close to that of a simple geometric shape and does not meander in space forming

a snake or river like structure. Examples of simple geometric shapes are circle, rectangle and

square. Different measures have been defined in order to compute the cluster compactness. For

example - radial compactness measures the compactness of a cluster as the sum of Euclidean dis-

tances between the centroid of its polygons and the centroid of the cluster itself . Thus

 . The smaller the value of this index, the more compact the cluster is.

Different types of Constraints: In many cases there is some domain knowledge present.

Instead of simply using this knowledge for validation purposes, it can also be used to “guide”

or “adjust” the otherwise unsupervised clustering process (Grira, Crucianu, & Boujemaa,

2005). The resulting approach is known as the semi-supervised clustering or the process of con-

straint-based clustering (Basu, Banerjee, & Mooney, 2002). Constraint-based clustering makes

use of the domain knowledge by transforming it into a set of constraints which are then applied

during the process of grouping together the data objects being clustered. Constraints applied dur-

ing the process of clustering can be of two types – instance-level constraints and cluster-level

constraints.

Instance-level constraints are applied to the individual objects being clustered. There are

two types of instance-level constraints, namely, must-link constraints and cannot-link constraints

(Davidson & Ravi, 2005). The must-link constraints are the set of constraints that will be satisfied

by the polygons that must belong to the same cluster. For an example of must-link constraints

consider a group of spatially contiguous census tracts (say tract 10, tract 11, and tract 12) where

the dominant population is that of a minority race. The constraint is that these census tracts must

www.manaraa.com

109

be clustered together. In order to implement this, must-link constraints will be applied to the cen-

sus tracts 10, 11, and 12. For example, - ,

 - , and - .

Cannot-link constraints are the set of pair-wise constraints that will be satisfied by a pair

of polygons if both the polygons are members of different clusters. On the other hand, the mem-

bers of the same cluster will violate this set of constraints. For example, there may be a require-

ment that the census tracts across county boundaries cannot be clustered together. In other words,

lets say that tract 1 belongs to county A and tract 2 belongs to county B. In this case, tract 1 and

tract 2 cannot be clustered together. In order to implement this, cannot-link constraints will be

applied to census tracts belonging to different counties. For example,

 - .

Cluster-level constraints are applied to the cluster on the whole. Examples of cluster-

level constraints are averaging or summation constraints (Davidson & Ravi, 2004). For example,

in the formation of school districts, within a district each polygon must be at most x distance

away from the school polygon. This will be categorized as a cluster-level constraint because it

pertains to grouping ―related‖ polygons into the same cluster. Another example is the constraint

that specifies that each district must have a student population of y students. Other examples of

cluster-level constraints include the constraints of spatial contiguity, and compactness

Heuristic Function based on Constraints: In order to incorporate the different types of

constraints within the clustering process, the idea of a heuristic function , borrowed from heu-

ristic search algorithms, is used. is a combination of:

(1) A function that approximates the distance of the current state of the cluster to the goal state

 thereby measuring the level of need of the cluster to grow further, and

(2) A cost function that measures the reduction in flexibility on the growth of the clusters .

www.manaraa.com

110

Using the above, is defined as a sum of the two, that is,

 (1)

The distance function takes into account the cluster-level constraints to find the dis-

tance of the current state of the cluster from its target state, and the cost function looks at the

effect of the growth of every cluster on the other clusters. Using this combination of and

CPSC is able to make informed decisions about which cluster to grow, or which polygon to add

to the selected cluster. The reduction in the flexibility of the growth of the clusters is viewed as a

cost function because a choice based on H alone may have an adverse effect on the growth of the

remaining clusters. With the addition of to we penalize a node if it restricts the growth of

other clusters. In other words, we prevent CPSC from following a purely greedy approach.

In order to select the distance function that approximates the distance of the current

state of the cluster to the goal state, the first step is to identify which constraints are easily quanti-

fiable, and which are the most important to satisfy. Using this information, the desired properties

of the target clusters need to be identified. For example, while forming congressional districts,

the most important constraint is equal population within a given margin of error, and spatial con-

tiguity. Another important constraint is spatial compactness. Thus, we can formulate our target

clusters to be spatially contiguous and compact clusters with equal population. Once the desired

properties of the target clusters have been identified, in order to define , we need to identify

which constraints are cluster-level constraints. For example, among the most important con-

straints identified for the congressional redistricting problem, the constraints of equal population

and spatial compactness are cluster-level constraints, while the spatial contiguity can be most eas-

ily translated into instance-level must-link and cannot-link constraints. Using the cluster-level

constraints identified to arrive at the target or the goal state, the distance function H can be de-

fined as:

 (2)

www.manaraa.com

111

where is the distance between the current state of cluster

and the target state of cluster based on cluster-level constraint .

Thus, for the congressional redistricting problem, the distance function H will be defined

as:

 –

 (3)

Where is based on the domain knowledge available about the expected total

population of each cluster produced, and this information can be easily used to describe the goal

state. Furthermore, the constraint of cluster compactness dictates that the cluster must grow to

form the most compact district. As stated before, a district with a circular shape would be the

most compact, the compactness index of a circle measured using the Schwartzberg‘s index

(Schwartzberg, 1996)(defined as the ratio of the square of the perimeter and the area) will always

be . Thus . The , and the

are the measures of the current state of the cluster.

With the use of the cost function our objective is to select a cluster to be grown that

will preserve the maximum degree of flexibility for the other clusters to grow. In order to select a

cost function that measures the reduction in flexibility on the growth of the clusters, we observe

the effect of the growth of one cluster on the ability of growth of the other clusters. This function

is mostly dictated by the domain-independent constraints of assigning every polygon to a cluster,

and forming spatially contiguous and compact district. As example of a cost function is as fol-

lows:

 (4)

where is the number of clusters, is the number of polygons surrounding a cluster—

i.e., neighbors—that have not yet been assigned to any cluster, is the (outer) boundary of a

cluster (assuming all polygons within the cluster are contiguous) that is shared with polygons

www.manaraa.com

112

that are still not assigned to any cluster, and, is the resulting new boundary of the cluster

 after adding a new polygon . Intuitively, this cost function says that if adding a new polygon

makes it more compact – such as filling up a concave segment of the old boundary – then the cost

will be negative (lowered); otherwise the cost will be positive as the cluster is growing more ag-

gressively reducing the flexibility of the growth of other clusters which would benefit much more

with the addition of new polygons. This cost function will promote a parallel cluster growth

process.

Another example of a cost function is as follows:

where is the number of clusters, is the number of polygons surrounding a cluster—

i.e., neighbors—that have not yet been assigned to any cluster, is the number of free neigh-

bors of the cluster and, is the number of free neighbors of the cluster after adding a

new polygon . Intuitively, this cost function will lead to a rush towards complete clustering, and

will encourage one cluster to dominate the clustering process by rewarding a cluster for adding

polygons that would give it more free neighbors. This cost function will promote a sequential

cluster growth process.

In summary, please note that if overestimates the distance of the current state of the

cluster from the target state, the clustering process will not jump from one cluster to another. It

will instead grow one cluster at a time. Therefore the clustering process will become sequential.

On the hand, if underestimates the distance then the clustering process will become considera-

bly slower. Similarly, a more stringent cost function will result in a slower clustering process with

every cluster selecting a polygon to grow very conservatively and vice-versa.

In Section 5.4 where we apply our algorithm to the congressional redistricting problem

and the school district formation problem, spatial contiguity and cluster compactness are impor-

(

5)

www.manaraa.com

113

tant properties of the desired target clusters; we chose the cost function based of the extent of the

open boundary of the clusters defined in Equation 4, as this cost function penalizes the clusters

the most if they are not spatially compact, and are instead distributed in space.

5.3.2 The CPSC Algorithm

The CPSC algorithm begins by selecting seeds from the dataset. As each seed will be grown to

form a cluster, every seed represents a separate cluster. Because each seed represents an individ-

ual and different cluster, the seed selection follows a counter-intuitive path where every seed po-

lygon must violate all must-link constraints w.r.t. to other seed polygons. Otherwise, the result-

ing seeds may be clustered within the same cluster, making the initial seeding invalid. Thus, the

seeds are selected from the dataset using a systematic search based upon the available domain

knowledge. This is done as follows: The heuristics based on the domain knowledge are measured

for each polygon, for example, the pair-wise distance between the polygons, the population of

each polygon, the area covered by each polygon, etc. Based on the desired properties of the tar-

get clusters, the most important constraint as identified by the domain experts is selected, and the

corresponding property used in the constraint is implemented and computed for each polygon.

For example, for the congressional re-districting problem, the constraint that every district should

have equal population is considered the most important; therefore, the property to be computed is

the population of each polygon. Next, the polygons are sorted in ascending order based on the

computed property. Then we select the top polygons in the sorted list that (1) violate the must-

link constraints such as spatial contiguity, and (2) abide by any cannot-link constraints, where is

the pre-defined number of clusters to be detected.

Once the seeds are selected, the initial clusters come into existence, and a search process

can begin. Adopting the A*-search algorithm, we assume that the initial clusters (consisting of

the individual seeds) are the start state, and the target clusters are the goal state. Each cluster is

then grown from the start state by adding polygons to the cluster one by one until the target clus-

www.manaraa.com

114

ter state is achieved. Adapting this search paradigm, at the beginning of every iteration the best

cluster (BC) to be grown is selected. To achieve this, a heuristic function is used (cf. Section

5.3.1). CPSC selects the cluster with the biggest need, that is the cluster with the largest .

Upon the selection of the best cluster, the next step is to select the best polygon to

be added to the best cluster. Toward this, first a set of potential polygons is selected that

may be added to . This set consists of all previously unassigned, spatially contiguous neigh-

boring polygons to , i.e. the polygons that share their boundary with

(), and have not been assigned to any cluster so far. In

case there are zero unassigned polygons remaining within the neighborhood of , then the

neighboring polygons from the neighboring clusters, i.e., the clusters sharing some portion of

their boundary with , are selected as potential polygons for . Every polygon within this set

must abide by each intra-cluster constraint. A selection between them is then made on the basis

of the heuristic function . is once again a combination of (1) a function () that approx-

imates the distance of the current state of to the goal state after the addition of , and (2) a

cost function that measures the reduction in flexibility on the growth of after the addition

of . Here CPSC selects the polygon that contributes most to the cluster, in other words, satis-

fies its need the most. Therefore, is the polygon that results in the smallest for . This

alternating strategy of selecting the cluster with the largest as , and then selecting the poly-

gon as the polygon that results in the smallest for , allows every cluster to grow simulta-

neously, therefore giving every cluster the equal opportunity to select the best polygon for itself.

If on the other hand, would be selected as the cluster with the smallest , then the clusters

would be forced to grow sequentially, and the property of compactness will be lost.

After is selected to be added to , it is necessary to check that by its addition the

spatial contiguity of the clusters is still maintained. If and its neighboring clusters are spatial-

www.manaraa.com

115

ly contiguous, the selected polygon is added to the best cluster . This process goes on

until:

1) All the polygons within the dataset have been assigned to a cluster, and the target state clus-

ters are produced that satisfy the given set of constraints, OR

2) The algorithm enters the state of a deadlock, i.e. a set of clusters enters a cycle of repetitive

states.

The condition ―all the polygons have been assigned to a cluster‖ is not a constraint in-

cluded in the instance-level or cluster-level constraints, as it is not domain dependent. Therefore,

it is explicitly defined here so that the algorithm continues to grow the clusters until there is a po-

lygon left that has not been assigned to any cluster. The condition ―the target state clusters are

produced‖ on the other hand is domain dependent, and refers to the pre-defined set of constraints,

i.e. the algorithm continues to grow the clusters till there is a cluster that has not satisfied all the

constraints. Both these conditions must be satisfied before the algorithm stops.

In the condition of “the algorithm enters the state of a deadlock” a cluster adds a poly-

gon, then loses the polygon to another cluster, and then regains the same polygon over and over

across successive iterations in a ―tug-of-war‖ with another cluster. Formally, we define a set of

clusters to be in a deadlock when at iteration I a cluster is at state x, and at iteration

J, where , the cluster is at state x again. The state of a cluster at any iteration I refers

to the polygons that are the members of the cluster at iteration I. Figure 48 outlines the algorithm.

The CPSC algorithm presented in Figure 48 can be applied to any domain given the dataset of

polygons, the number of clusters, a set of constraints, and the heuristic function based on the

constraints.

www.manaraa.com

116

Figure 48: The CPSC Algorithm

Find possible polygons
Select a set of neighboring polygons such that

i. Polygon such that

 .
ii. Polygon is a free polygon, i.e. has not been as-

signed to any cluster.
iii. Polygon does not violate any intra-cluster con-

straint.
If , then select a set of neighboring polygons pn
such that:
i. Polygon such that

 .
ii. Polygon does not violate any intra-cluster con-

straint.
iii. Polygon was not added to in the previous to

previous iteration i.e. current iteration – 2.
Return

Select best polygon
Compute the resulting .
do

Select
If belongs to a neighboring cluster

If can be removed from without

breaking its spatial contiguity, return true
Else, return false
If false,

Set
Remove from

While()
Return

CPSC Algorithm

Input: Dataset of polygons, Heuristic Function , number of seeds , Target state of the clusters,
Set of intra-cluster constraints.

1. Select seeds
2. Initialize clusters by assigning each seed to a cluster .
3. While (There exists a polygon that has not been assigned to a cluster OR there exists a cluster that

does not satisfy all cluster-level constraints OR there is a deadlock)
i. Select best cluster to grow.

ii. Find list of possible polygons as candidates for the growth of .
iii. Select best polygon from to add to .
iv. Add to BC .
v. Update Cluster Status

vi. If updated, Continue

Else (deadlock detected), Break.
 End While

Select seeds
Select seeds such that:
i. The seed should be a polygon with a larger than

the other non-seed polygons.
ii. Each seed polygon must violate the intra-cluster con-

straints w.r.t. to other seed polygons.
Return seeds.

Select best cluster
i. Compute for each cluster.

SelectThe CPSC* Algorithm

Input: Dataset of polygons, , , Target

state of the clusters, Set of intra-cluster constraints.

[1] Select seeds

[2] Initialize clusters

 , initialize iteration = 0.

[3] While (There exists a polygon that has not

been assigned to a cluster)

 Select best cluster () to grow

 Find list of possible polygons () to add

to .

 Select best polygon () from to add

to .

 Update Cluster Status

 If updated, Continue

Else (deadlock detected)

Select the from clusters not in-

volved in a deadlock

Repeat the growth process for .
End While

ii. the best cluster
 , i.e., the clus-

ter with largest .
Return

Update Cluster Status
If was a free polygon, Increment iteration

Return true
Else, Increment iteration

Initiate deadlock watch
If deadlock detected, Return false
Else, Return true.

Deadlock Watch
Add and current iteration to the deadlock
watch list.
If within the previous items stored in the
deadlock watch list:

If the iterations stored are in consecutive order
If is a member of items,

Return true
 Else,

Return false.

www.manaraa.com

117

5.3.3 Extensions of CPSC

Though our algorithm guarantees completeness and optimality in the solution, it does not guaran-

tee convergence because of the search process is cluster-centric instead of instance- or polygon-

centric. First we define convergence as follows. An algorithm is said to converge when every

polygon , where is the complete dataset, is assigned to a cluster i.e

 . Currently CPSC does not guarantee convergence, i.e., every polygon

may not be assigned to a cluster. Usually this will happen if the constraints provided by the user

cannot be satisfied by the dataset.

If the problem allows constraints to be softened or relaxed, then, in order to guarantee

convergence, we propose another algorithm known as CPSC* (Section 5.3.3.1). Furthermore, in

order to improve the quality of the clusters obtained by CPSC*, we propose another extension of

CPSC – CPSC*-PS (Section 5.3.3.2).

CPSC*. The CPSC* algorithm, presented in Figure 49, follows a similar approach to

grow clusters as CPSC did. However, CPSC* allows the users to relax their constraints to ensure

that every polygon gets assigned to a cluster. This relaxation of constraints is performed in two

steps. First, CPSC* uses a weighted distance function H – thereby converting the hard cluster-

level constraints to soft cluster-level constraints, and allowing the user to prioritize the con-

straints. And second, while selecting the potential polygon set to grow a cluster, CPSC* checks

that all must-link constraints are met. However, if the best cluster () has not achieved its target

state yet, and there are no more polygons left that satisfy the desired constraints, then these con-

straints are relaxed, i.e. their margin is increased, so that the remaining unassigned polygons may

become potential members of . For example, if there is a constraint that states that every poly-

gon within the cluster must be at most 10 miles away from the seed polygon. However, there may

exist polygons within the dataset that are more than 10 miles away from every seed. These poly-

gons will never get assigned to a cluster. To overcome this situation the user may define the max-

www.manaraa.com

118

imum distance allowed between any polygon within the cluster and the seed to be increased by 2

miles at a time. This condition will ensure that every polygon gets assigned to a cluster eventually

no matter how far away they are from the seed polygons.

The weighted distance function H is defined as follows:

where is the distance between the current state of cluster and the

target state of cluster based on cluster-level constraint , and is the weight assigned to clus-

ter-level constraint where and . The weights are assigned ac-

cording to the priority of the constraints, and are user defined. The weighted distance function

used by CPSC*, therefore, allows the user the flexibility to guide the growth of the clusters based

on selected constraints, as opposed to the distance function used by CPSC that enforces every

constraint equally on the clustering process. Furthermore, in the worst-case scenario, CPSC may

lead to a situation where two or more clusters enter a deadlock. If this happens the algorithm will

not converge. In order to avoid deadlocks; CPSC* initiates a deadlock watch as soon as a cluster

adds a polygon that was previously assigned to another cluster. The deadlock watch stores the

current state of the cluster. If across consecutive iterations, the two or more clusters repeat

the same state, a deadlock is detected. CPSC* then breaks the deadlock by forcing another cluster

not involved in the deadlock to grow the properties of deadlock detection and breaking, and relax-

ing intra-cluster constraints when zero.

 Theorem 1: CPSC* guarantees convergence.

Proof: Let us assume that there exists a polygon , but CPSC* either (1) has

stopped executing, or (2) has resided in a deadlock permanently. In case 1, assuming that CPSC*

has stopped executing would imply that every polygons has been assigned to a cluster. This is

(6)

www.manaraa.com

119

Figure 49: CPSC* Algorithm

The CPSC* Algorithm
Input: Dataset of polygons, , , Target state of the clusters, Set of intra-cluster constraints.

1. Select seeds
2. Initialize clusters , initialize iteration = 0.
3. While (There exists a polygon that has not been assigned to a cluster)

i. Select best cluster () to grow
ii. Find list of possible polygons () to add to .

iii. Select best polygon () from to add to .
iv. Update Cluster Status
v. If updated, Continue

Else (deadlock detected)
Select the from clusters not involved in a deadlock

Repeat the growth process for .
End While

Update Cluster Status
Add to .
If was a free polygon, Increment iteration

Return true
Else, Increment iteration

Initiate deadlock watch
If deadlock detected, Return false
Else, Return true.

Deadlock Watch
Add and current iteration to the deadlock watch
list.
If within the previous items stored in the
deadlock watch list:

If the iterations stored are in consecutive order
If is a member of items,

Return true
Else,

Return false.

Select seeds
Select seeds such that:

 The seed should be a polygon with a larger than the
other non-seed polygons.

 Each seed must be non-contiguous to each other based
on the contiguity function.

Return k seeds.

Select best cluster ()
Compute F for each cluster.
Select the best cluster , i.e., the

cluster with largest F.
If two or more clusters have the largest F i.e.

Select the best cluster such that

 and

 where

 is the number of free polygons

spatially contiguous to cluster .

Return the best cluster .

Find possible polygons
Select a set of neighboring polygons
such that:
- Polygon such that where

 is the contiguity function provided
as input to the algorithm.

- Polygon is a free polygon, i.e. has not been as-
signed to any cluster.

- Polygon does not violate any intra-cluster constraint.
If , then Select a set of neighboring polygons
 such that:
- Polygon such that where

 is the contiguity function provided
as input to the algorithm.

- Polygon does not violate any intra-cluster constraint.
If , then relax intra-cluster constraints, and repeat
process to select possible polygons.
Return

Select best polygon (BP)
Compute the resulting
Select

If belongs to a neighboring cluster

If can be removed from without breaking its

spatial contiguity, return true
Else, return false
If true, then remains the same
Else, remove from

Repeat the selection process of
Return

www.manaraa.com

120

because CPSC* continues to grow all clusters until there exists a polygon that has not been as-

signed to a cluster. Since polygon has not yet been assigned to a cluster, CPSC* will not stop

executing. The only condition when will not be directly taken up by it‘s neighboring cluster,

let‘s say , if some other cluster, ‘s F is greater than ‘s F. That is, . Due to

possible polygons are available, CPSC* guarantees that a polygon will be added to a cluster until

there exists a free polygon within the entire dataset. Thus, the condition will be-

come true. When this happens polygon will be assigned to cluster , and since every polygon

has now been assigned to a cluster, CPSC* will stop executing. Thus, when CPSC* stops execut-

ing, every polygon will be assigned to a cluster.

In Case 2, assuming that CPSC* has resided in a deadlock permanently would imply that

there does not exist a cluster that is not involved in the deadlock. This further means that none of

the clusters have any free polygons that are contiguous to them. If this is the case, then all poly-

gons would already be assigned to a cluster, and the algorithm would have converged already.

Thus, CPSC* cannot reside in a deadlock permanently. Hence, our assumption has to be false for

either case. Therefore, using proof by contradiction, we conclude that CPSC* guarantees conver-

gence.

CPSC*-PS. In order to guarantee convergence CPSC* forces the hard constraints to be

converted to soft constraints. To improve the quality of the results obtained by CPSC* such that

the solution may come closer to satisfying the hard constraints, we propose an extension of

CPSC* known as CPSC*-PS, where PS stands for Polygon Split. The assumption that CPSC*-

PS makes is that the polygons can be divided into smaller polygons. Figure 50 presents an outline

of the algorithm.

Once all the polygons have been assigned to a cluster, if the hard cluster-level constraints

have not been satisfied, then CPSC*-PS selects a polygon from the cluster with the smallest F to

www.manaraa.com

121

be removed. This polygon is divided into two smaller polygons based on the underlying tessella-

tion, and added to the dataset as unassigned polygons. CPSC*-PS then repeats the process of as-

signing these polygons to the clusters. This process is repeated until all cluster-level constraints

have been satisfied, or until there exists a polygon that may be divided into smaller polygons.

Figure 50: The CPSC*-PS Algorithm

Note: All the functions (for example, Select k seeds, etc.) for CPSC*-PS are the same as

CPSC*, and therefore are not defined here again. Furthermore, as initially the algorithm uses

CPSC* to produce clusters that are further improved upon using the polygon-split mechanism,

and CPSC* guarantees convergence, CPSC*-PS also guarantees convergence.

5.4 Applications to Real-World Problems

In order to show the usefulness of our algorithm, we have applied CPSC and its extensions to two

real world problems: (a) congressional redistricting and (b) formation of school districts. Both

these problems can be interpreted as problems of cluster formation where each cluster represents

a district. Each district or cluster is formed by grouping together polygons that follow certain

The CPSC*- PS Algorithm

Input: Dataset D of n polygons, Set of intra-cluster constraints, F=G+H, k, Target state of the clus-
ters

Select seeds
Initialize k clusters , initialize iteration = 0.
Loop: While (There exists a polygon that has not been assigned to a cluster)

Select best cluster (BC) to grow
Find list of possible polygons (PP) to add to BC.
Select best polygon (BP) from PP to add to BC.
Update Cluster Status
If updated, Continue
Else, deadlock detected

Select the BC from clusters not involved in a deadlock
Repeat the growth process for BC.

End While
If all cluster-level constraints have not been satisfied

If there exists a polygon that can be divided into smaller polygons
Select cluster with smallest F

Select polygon from such that cluster does not violate the contiguity constraint

Split polygon into and such that

Add and to dataset D.

Go to loop
Else, end.

www.manaraa.com

122

constraints. Details of both the problems along with the constraints applied in both cases are de-

scribed next.

Note that in our representation of the congressional redistricting problem, since all con-

straints involved are hard constraints, we use the CPSC algorithm. In the formation of school

districts problem, there is a mixture of hard and soft constraints, and hence we use the CPSC*

variant. As such, we also present the weights we use for the design of functions in the search

process for the school districts problem.

5.4.1 The Congressional Redistricting Problem

Congressional redistricting has been a vexing problem for a long time. Once a state learns that it

has been assigned seats, it must divide its territory into districts. This division is not an arith-

metic division but a geometric one where there can be several ways of dividing the state territory

into districts (Hayes, 1996). This opportunity of being able to divide using several different me-

thods leads to the phenomenon of political gerrymandering where any party could form districts

for their own advantage.

The constraints that define a ―good district‖ are as follows: (1) All the districts within a

state should be equal in population, (2) Each district should be a single continuous territory, (3)

Districts should be compact; Tentacles wriggling through the landscape are considered a bad de-

sign, (4) Districts should recognize the exiting communities of interest, (5) Districts should con-

form to existing natural and political boundaries when possible, and (6) Finally, under the US

Voting Rights Act a district must not be drawn with the intent of excluding the minority candi-

dates from election.

In case of any conflict among the above constraints, the highest priority is given to nu-

merical equality and spatial contiguity. In our implementation we take into consideration only

the first three constraints as they define the overall structure of the algorithm. Constraints 4, 5,

www.manaraa.com

123

and 6, are not incorporated due to lack of data. However, they can be applied as must-link and

cannot-link constraints while selecting the possible set of polygons in step 3(c) of the algorithm.

Therefore, the problem statement is to divide the geographic area of a state into dis-

tricts such that the total population within each district is nearly equal or within 1% margin of

error. Each of these districts must be spatially contiguous. Finally all of the districts must be

as compact as possible.

Heuristics Used. The heuristic function used by CPSC in order to determine the best

cluster to grow, and the best polygon to add to the best cluster is defined based on the input data-

set, and the constraints defined before the clustering process. For the congressional redistricting

problem, the inputs to the algorithm are:

Dataset: Census Tracts of US as the set of polygons

Number of seeds:

Target: spatially contiguous and compact clusters each containing population, ,

with a margin of error of 1%.

Set of constraints: Cluster-level Constraints:

CS1. Each cluster must be spatially contiguous.

CS2. Each cluster must be compact.

CS3. Each cluster must contain equal population with a margin of error of 1%.

Instance-Level Constraints:

CS4. Set of spatial constraints as a set of must-link constraints between the census tracts.

CS5. Set of spatial constraints as a set of cannot-link constraints between the census

tracts.

All the constraints mentioned above are hard constraints. Based on the above inputs, we

define the heuristic function as follows:

 ,

www.manaraa.com

124

where , defined in Equation 3 in Section 5.3.1, measures the need for the respective

cluster to grow further, and , defined in Equation 4 in Section 5.3.1, is the cost of the reduction

in the flexibility of the growth of the cluster

Thus, together with , the best cluster (i.e. the best cluster that should be selected to

grow) is one with the highest value of , meaning one that is (1) furthest away from the target

population and/or the least compact, and (2) the costliest to grow (akin to the min-conflict algo-

rithm in conventional constraint satisfaction problems).

As alluded to earlier, we use the same rationale in designing the cost function for mea-

suring the reduction in the flexibility of the growth of the best cluster while selecting the best po-

lygon to add to the best cluster as:

 (6)

To select the best polygon to add to a cluster, we select the neighbor that reduces the

open boundary of the cluster the most, and takes the cluster closest to its target. Thus together

with , the best polygon will (1) increase the population of the cluster, (2) make it more com-

pact, and (3) reduce the open boundary of the cluster.

Note that while we use a maximum function in Eq. (4), we use a summation function in

Eq. (6). This is because when a free polygon (i.e. a polygon not yet assigned to any cluster) is

added to a cluster, this action may considerably hinder the growth of another cluster. Therefore,

we include the cumulative effect of the addition of a polygon to a cluster. Taken together, Eq. (4)

allows us to pick the least costly cluster to grow, and Eq. (6) allows us to pick the least costly

neighbor to add to that cluster.

Also, when computing for identifying the seeds in the first place, since each ―cluster‖

consists of only one polygon, the compactness measure is the same for each cluster (i.e.,= 1) and

 is also the same for each cluster. Thus, in our application here, selecting the seeds from the

www.manaraa.com

125

dataset reduces the problem to sorting them by – in descending order

and selecting the top polygons. Furthermore, since the seeds cannot be spatially contiguous we

enforce a physical distance between them as follows: The physical distance between two seeds

must be a function of and unless specified otherwise. That is, for seeds and the distance

between them where

 , is the area of the

enclosing minimum bounding rectangle of the dataset, and is the number of seeds.

5.4.2 The School District Formation Problem

A school district is a geographic area in which the schools share a common administrative struc-

ture. A school district may have one or more public school. School districts are formed to ensure

that no school is burdened with too many students, and that no student has to travel far to go to

school. Therefore, each school district will approximately have a certain number of students, and

every household will be within a certain distance from a school.

The formation of school districts is important because school districts hold great impor-

tance in the legislature of the community. The functioning of a school district can be a key influ-

ence and concern in local politics. A well run district with safe and clean schools, graduating

enough students to good universities, can enhance the value of housing in its area, and thus in-

crease the amount of tax revenue available to carry out its operations. Conversely, a poorly-run

district may cause growth in the area to be far less than surrounding areas, or even a decline in

population (Mann & Fowle, 1852).

Over the years due to the development of new businesses and new roads, populations

have shifted and occupied new land. As a result, there are cases where a school district has lost

the reason it even existed, or an existing school district is over-burdened with students and needs

a new school.

www.manaraa.com

126

The problem statement is therefore, to divide the geographic area of a state into districts

such that each district has almost equal number of students, and every household must be within

a threshold distance from the public school in the district.

Heuristics Used. For the school district formation problem, the inputs to the algorithm are:

Dataset: Census Blocks as the set of polygons

Number of seeds:

Target: spatially contiguous and compact clusters each containing population ,

with a margin of error of 1%, and each polygon within a cluster must be within the threshold dis-

tance from the school polygon.

Similar constraints apply to this problem as the congressional districting problem. How-

ever, only spatial contiguity is a hard constraint. The equal population and compactness are soft

constraints, because it is more necessary to assign every polygon to a cluster or school district in

this case, rather than equal population and compactness. Other than these constraints, there is an

added intra-cluster constraint of the threshold distance from the school polygon, i.e. every poly-

gon within the school district must be no more than the threshold distance away from the polygon

within which lies a school. This constraint is also a soft constraint, such that the threshold dis-

tance increased to guarantee convergence. Finally, the last constraint that applies to this problem

is that the seeds will be fixed as the school polygons. This constraint is a hard constraint because

the schools cannot be moved.

Based on the above inputs, we define the heuristic function F as follows:

 ,

where

 ,

 ; is the cost of the reduction in the flexibility of the growth of the cluster;

 is the total population divided by . is the same function as defined for

www.manaraa.com

127

the previous problem. Similarly, for selecting the best polygon is also the same. As the seeds

are fixed for this problem, we do not need to execute the step to select seeds using . The thre-

shold distance between the polygons and the seed polygons is an intra-cluster constraint, and is

therefore enforced when selecting potential polygons to be added to the best cluster as defined in

Section 5.3 for the CPSC* algorithm. This distance is increased to allow larger distance between

the polygons when relax constraints function is called by CPSC*.

5.5 Experimental Analysis

In this section we evaluate the CPSC algorithm suite by applying it to two well known redistrict-

ing problems - congressional redistricting as defined in Section 5.4.1 and the school district for-

mation problem as defined in Section 5.4.2. We also compare our results for the congressional

redistricting problem the results obtained by applying the graph partitioning, the simulated an-

nealing algorithm (SARA), and the genetic algorithm for zone design described in Section 5.2.

Furthermore, we examine the behavior of CPSC and CPSC* in these two experiments, and

present CPSC*-PS to improve the quality of the clusters obtained by the CPSC* algorithm.

5.5.1 Evaluation of CPSC on the Congressional Redistricting Application

State of Nebraska. For this experiment, we used the census tract dataset for the state of Ne-

braska. The total number of polygons (census tracts) in Nebraska is 505. The state of Nebraska

has been assigned 3 seats in the congress. Therefore the number of clusters (k) is equal to 3. The

approximate population of each cluster or district must be equal to 570421 within a 1% margin of

error. The 110
th
 Congressional District Map for Nebraska is presented in Figure 51(f).

We first applied the graph partitioning algorithm presented in Section 5.2.1. Figure 51(a)

shows the initial clusters formed based on a random run, and the final clusters produced in step 2

of the algorithm. Next, we applied SARA (presented in Section 5.2.2) on the same dataset. An

initial plan needs to be presented to the algorithm as input. It then improves upon the clusters so

www.manaraa.com

128

that all the conditions are satisfied, and an optimum solution may be obtained. Figure 51(b) and

Figure 51(c) present two random input plans and the respective results obtained upon the applica-

tion of SARA. The input plans were selected with the following constraints: 1) Every input dis-

trict is spatially contiguous. 2) Every input district is fairly compact to begin with. 3) Location of

the districts is in the vicinity of the expected districts. 4) The input districts are designed such that

no more than one initial seed selected by CPSC lies in any of the input district. A visual inspec-

tion of the input and the output plans show that the output plan is fairly dependent on the input

plan. Furthermore, the algorithm does not promote the formation of compact districts.

The genetic algorithm for zone design, described in Section 5.2.2, was then applied to the

Nebraska dataset. The results obtained are shown in Figure 51(d). Finally, the CPSC algorithm as

described in Section 5.3 was applied to the Nebraska census tract dataset. As none of the con-

straints being considered for the congressional redistricting algorithm are difficult hard con-

straints, CPSC finds an optimal solution. The results obtained are presented in Figure 51(e).

Figure 51: (a) Results of Graph Partitioning Algo. (b) & (c) Results of SARA: Input (left) and Output (right) plan

1 & 2 (d) Result of the Genetic Algorithm (e) Results of the CPSC Algorithm (f) 110th Congressional District Map for

the state of Nebraska

Tables 12 and 13 present a comparison of the population distribution within the districts

produced by all the methods listed above. We also compare the compactness of each district

where the compactness is measured using the Schwartzberg Index (Schwartzberg, 1996). The

desired population for each cluster is 570421. It is suggested that the actual population of each

cluster or district must be within a 1% margin of error (M.O.E.). The margin of error is also

www.manaraa.com

129

computed for each district formed and listed in Tables 12 and 13. Please note that the spatial con-

tiguity was implemented as a hard constraint in all the algorithms. Thus all the districts obtained

by all the methods are spatially contiguous. From Tables 12 and 13 we can see that CPSC pro-

duces clusters/districts that fit the input criteria the best. All the districts have population within

1% margin of error, and the majority of districts are more compact than the districts obtained by

SARA and the genetic algorithm.

Table 12: Comparison of clustering results for Nebraska Dataset

District Graph Partitioning Simulated Annealing

(SARA)

Genetic Algorithm

 Pop. M.O.E Compact. Pop. M.O.E. Compact. Pop. M.O.E Compact.

1 382209 -32.99 354.61 531708 -6.78 411.18 586140 2.76 92.81

2 75227 -86.81 3.34 586714 2.85 468.08 562373 -1.41 363.76

3 1253827 119.8 976.27 592814 3.93 95.95 562750 -1.34 142.44

Stdev 611426.45 107.18 492.69 33657.13 5.90 200.45 13614.36 2.39 144.26

Average 570421 0.00 444.74 570412 0.00 325.07 570421 0.00 199.67

Table 13: Comparison of clustering results for Nebraska Dataset (Contd.)

District CPSC Current Districts

 Pop. M.O.E Compact. Pop. M.O.E Compact.

1 573900 0.61 396.77 569318 -0.25 373.35

2 570408 0.00 134.46 574945 0.78 102.79

3 566955 -0.61 86.71 566590 -0.52 22.41

Stdev 3472.52 0.61 166.95 4260.50 0.69 183.86

Average 570421 0.00 205.98 570421 0.00 166.18

State of Indiana. In order to show the scalability of our algorithm, we apply our algorithm

CPSC to a more complex dataset. For this purpose we use the census tract dataset of the state of

Indiana. There are 1413 polygons (census tracts) in Indiana, and the number of seats assigned to

Indiana is 9. Therefore, with total expected population of each district equal to 675610.

Figure 52 presents the districts formed for the Indiana dataset by the graph partitioning algorithm

(Figure 52(a)), SARA (Figure 52(b)), the genetic algorithm for zone design (Figure 52(c)), CPSC

(Figure 52(d)) and the 110
th
 congressional district plan for the state of Indiana (Figure 52(e)).

Tables 14 and 15 present a comparison between the results obtained by these four methods. Once

again it is observed that CPSC produces districts that match the input criteria the most.

www.manaraa.com

130

Figure 52: Results for the Indiana dataset (a) Graph Partitioning Result (b) SARA Result (c) GA Result (d) CPSC

Results (e)Current Districts

Table 14: Comparison of clustering results for Indiana Dataset

 Graph Partitioning Simulated Annealing (SARA) Genetic Algorithm

District Pop. M.O.E Compact. Pop. M.O.E Compact. Pop. M.O.E Compact.

1 659901 -2.33 80.60 675669 0.01 132.84 396841 -41.26 105.52

2 660580 -2.22 49.63 681649 0.89 85.26 1029743 52.42 72.21

3 660517 -2.23 138.08 525207 -22.26 63.89 541885 -19.79 75.91

4 657017 -2.75 95.84 680292 0.69 77.69 776054 14.87 59.69

5 659339 -2.41 66.53 690360 2.18 68.18 735639 8.89 61.82

6 658714 -2.50 94.24 706184 4.53 105.33 698310 3.36 78.01

7 730879 8.18 102.05 700061 3.62 70.79 666736 -1.31 31.51

8 658926 -2.47 26.01 708589 4.88 83.209 602199 -10.87 61.18

9 734612 8.73 121.21 712474 5.46 41.5 633078 -6.3 35.65

Stdev 32424.23 4.80 34.83 57961.42 8.58 26.06 174101.04 25.77 22.41

Average 675609.44 0.00 86.02 675609 0.00 80.97 675609 0.00 64.61

Table 15: Comparison of clustering results for Indiana Dataset (Contd.)

 CPSC Current Districts

District Population M.O.E Compactness Population M.O.E Compactness

1 680395 0.71 15.11 677092 0.22 126.87

2 673922 0.05 50.03 672941 -0.4 92.29

3 673208 -0.06 101.45 675732 0.02 82.14

4 673206 -0.06 70.39 678656 0.45 64.14

5 675011 -0.09 55.47 657666 -2.65 13.99

6 672429 -0.46 67.42 693750 2.69 72.63

7 675097 -0.08 104.50 677947 0.35 68.42

8 673970 0.06 57.26 660700 -2.21 88.05

9 675179 -0.06 83.11 686001 1.54 63.96

St. dev. 1803.96 0.31 27.55 11210.50 1.66 30.04

Average 675609.44 0.00 67.19 675609.44 0.00 74.72

Finally, we also present a runtime comparison of the simulated annealing redistricting al-

gorithm (SARA), the genetic algorithm for zone design, and constrained polygonal spatial clus-

tering (CPSC) algorithm. The results are presented in Table 16. It can be observed that while

CPSC takes more time than SARA when is small, where is the number of polygons being

www.manaraa.com

131

clustered, the time required by CPSC for a larger dataset does not scale up as fast as it does for

the other two algorithms.

Table 16: Runtime Comparison (Minutes) on Intel Pentium processor T4300, 4GB memory

 Graph Partitioning SARA Genetic Algorithm CPSC

N = 505 1440 1.9 65.52 5.85

N = 1413 2520 49.18 598.99 13.41

In both the experiments described above CPSC produces clusters that are spatially conti-

guous, compact, and conform to the other constraints presented to the algorithm as inputs. Fur-

thermore in the congressional redistricting experiment a visual inspection of the Figures 51 & 52

show us that CPSC produces the most compact clusters, which is further verified by the compact-

ness indices produced using the Schwartzberg index. The comparison of results in Tables 12, 13,

14 and 15 shows us that CPSC is the only algorithm that produces clusters with the most equita-

ble population division within the districts. Furthermore Table 16 lists a runtime comparison of

CPSC with the other three techniques. SARA produced the result the fastest (1.9 minutes) with a

small dataset, however the plan produced was not optimal. CPSC produces a plan faster (13.41

minutes) than SARA (49.18 minutes) when the dataset size almost triples.

The main reason behind CPSC‘s superior performance is the use of heuristic function in

seed selection, and in deciding which cluster to grow and which polygon to add to the selected

cluster. This feature of parallel growth of all the clusters and unbiased selection of polygons is

the novelty of CPSC and makes it better than other redistricting algorithms. Other than this, the

holistic integration of constraints makes the resultant clusters a lot closer to the desired target.

Finally, another unique feature of CPSC is the use of the cost function as a part of the heuristic

function that measures the reduction in flexibility of clustering with every assignment of a poly-

gon to a cluster. Thus for redistricting purposes CPSC gives an optimal starting plan as opposed

to randomized plans produced by other methods.

www.manaraa.com

132

The Graph partitioning algorithm runs in two phases. In the first phase it makes an initial

guess where the partitions begin formation by a random seed selection. As a result the initial par-

tition formed can be best described as a sub-optimal solution. Therefore, in order to get any mea-

ningful results the bulk of the weight lies on the second phase where the initial partition formed is

improved by an exchange of polygons within the clusters. Because of this large dependence on

the initial plan every new run of the program is likely to produce a different plan. For a large da-

taset millions of plans may be produced which may make it very difficult for the user to select the

best plan.

Simulated Annealing algorithms have become well known among optimization algo-

rithms for they allow for a locally sub-optimal move in order to get out of local optima. Howev-

er, there is no look-ahead property in the algorithm. Moreover, there is no space for incorporat-

ing explicit constraints in the algorithm. The results obtained show that there is a large depen-

dence on the input plan provided to the algorithm. Therefore, it will be appropriate to use the

simulated annealing approach to further improve a plan that is already very close to an optimal

solution.

Genetic Algorithms have the ability to discover an optimal solution, but they may take

very long time (cf. Table 16) before they are able to do so. Moreover, these algorithms are also

heavily dependent on the input population, and the optimization function. The input population

represents various possible solutions. Once again, the user has to be able to come up with good

initial solutions to obtain a better final solution in a reasonable amount of time.

5.5.2 Evaluation of Extensions of CPSC on the School District Application

In the next experiment we used a partial census block dataset from the state of Texas to compare

CPSC and CPSC*. Basically, we first assumed the constraints were hard when applying CPSC

and then assumed that the same constraints could be relaxed when applying CPSC*. This does

not imply that in the real district formation problem that constrains could be arbitrarily relaxed.

www.manaraa.com

133

Our goal here was to highlight the impact that CPSC* could have on the redistricting problem if

constraints were soft.

First, we randomly picked three blocks and designated them as school polygons, i.e. po-

lygons with schools within and set . The dataset consists of 160 polygons and is shown in

Figure 53(a). The problem statement for the school district formation problem has been de-

scribed in Section 5.4.2. The expected result is to see number of school districts, where is the

number of schools in the area. Each school district should have approximately equal number of

students, and the farthest household in any district from the school must be within the threshold

distance, i.e. the maximum distance allowed between a polygon and the school polygon. To be-

gin with the desired student population within each district is 238452 with a margin of error of

1%, and the desired threshold distance is 10 miles. When CPSC was applied to this dataset, all

the polygons were not assigned to a cluster because some of the polygons were further away from

the school polygon. The result of CPSC is presented in Figure 53(b). However, as the problem

statement dictates that the threshold distance may be relaxed, and thus may be treated as a soft

constraint, we applied CPSC* next to this dataset. The threshold distance is increased by 5 miles.

The result of CPSC* is presented in Figure 53(c). A visual inspection of CPSC* shows that

every polygon has now been assigned to a cluster. Table 17 lists the population in each district,

the margin of error of the population, and the compactness of each district formed by CPSC and

CPSC*. It can be seen that for the districts obtained by CPSC*, none of them have a margin of

error more than 1%.

Figure 53: (a) School District dataset (b) CPSC Result (c) CPSC* Result

www.manaraa.com

134

Table 17: School districts result statistics

 CPSC CPSC*

 Pop. M.O.E Compact. Pop. M.O.E Compact.

1 165827 -30.4 66.93 238998 0.23 125.62

2 165888 -30.4 91.43 237053 -0.59 244.42

3 163086 -31.6 98.31 239305 0.36 193.04

St. dev. 1600.42 0.69 16.49 1221.25 0.52 59.58

Average 164933.67 -30.80 85.56 238452.00 0.00 187.69

For the school district experiment CPSC does not provide a solution for the problem, be-

cause an optimal solution does not exist within the dataset. However, if the problem is allowed to

be modified such that the constraints can be relaxed, then CPSC* is able to provide an optimal

solution for the school district problem.

In order to validate CPSC*-PS we conducted an experiment with a synthetic dataset that

consists of a set of 20 polygons with 1000 population each (Figure 54(a)). The target is to divide

the dataset into three clusters with a total population of 6666 each. When CPSC is applied to this

dataset, the algorithm does not converge because the target can never be achieved. Once every

cluster has achieved a population of 6000 each, all three of them are stuck fighting for the remain-

ing two polygons. If on the other hand, CPSC* is applied to this dataset, and constraint of equal

population is converted to a soft constraint of population between 6000 and 7000, the result ob-

tained is three clusters with total population 6000, 7000 and 7000 respectively (Figure 54(b)).

However, since we are still quite far from the initial target of 6666, we apply CPSC*-PS to this

dataset. Each polygon within the dataset can be subdivided into two smaller polygons. The popu-

lation gets divided equally within the two smaller polygons. CPSC*-PS when applied to this data-

set results in three clusters with population 6500, 6500, and 7000 respectively (Figure 54(c)).

Figure 54: Application of CPSC* and CPSC*-PS on a synthetic dataset. (a) The synthetic dataset (b) Result of

CPSC* (c) Result of CPSC*-PS

www.manaraa.com

135

From these observations, we see the strengths and weaknesses of these three CPSC ver-

sions. In summary, CPSC is most suitable for situations where the constraints defined by the user

are hard constraints, and a solution exists within the dataset. In case the constraints defined by the

user are soft, and can be prioritized, CPSC* will be a better choice than CPSC. CPSC*-PS is the

same as CPSC* with the additional steps of splitting polygons in order to optimize the clusters

discovered with CPSC*. Thus CPSC*-PS is more computationally expensive than CPSC and

CPSC*, and therefore must be used in situations where the polygons can be split into two or more

smaller polygons such that the smaller polygons are still meaningful in the context of the applica-

tion (e.g., splitting a county into census tracts while forming congressional districts within the

state is meaningful because a census tract is a more compact polygon with smaller population,

and can be easily divided into different congressional districts, but splitting a watershed into two

is not meaningful since two watersheds belonging to two different rivers cannot be clustered to-

gether) and the result obtained by CPSC* is not sufficient.

5.5.3 Additional Analysis of CPSC Algorithms

Initial Seed Selection. In the section we further analyze the CPSC suite of algorithms. One

would assume that the seed selection process has a great impact on the final results of the algo-

rithm. To see the impact of the initial seed selection, we conducted an experiment with a small

synthetic dataset. The dataset consists of a set of 27 polygons with 1000 population each. The

target is to divide the dataset into three clusters with total population of 9000 such that each clus-

ter is spatially contiguous and compact. To demonstrate the effect of seed selection, we modified

the seed function to obtain different seeds. The results are presented in Figures 55(a, b & c).

CPSC produces the same result irrespective of the initial seeds selected. Figure 55(c) further de-

monstrates that CPSC is robust enough to migrate the seeds from their original location such that

the clusters satisfy all the user defined constraints when there is only one optimal solution within

the dataset. However, in some cases this may not be the result, as shown in Figure 56. The figure

www.manaraa.com

136

demonstrates the different clusters produced for the Indiana census tract dataset based on the se-

lection of different seeds. All the three plans meet the equal population criteria with 1% margin of

error.

Figure 55: Application of CPSC on a synthetic dataset. Three initial seeds are color-coded as blue, pink, and

green.

Figure 56: (a) CPSC results with minimum population seeds (b) CPSC results with maximum population seeds (c)

CPSC results with maximum population seeds but with smaller distance.

5.6 Conclusion and Future Work

In this chapter we have proposed a new spatial clustering approach for polygon datasets instead

of point datasets. This approach makes use of the available domain knowledge in the form of

constraints that guide the clustering process. Our algorithm, called constrained polygonal spatial

clustering (CPSC), views the clustering process as a search process, with seeds as the start states,

and the desired clusters satisfying or optimizing the constraints as the goal states. As a result it

can employ an A* search-like mechanism that allows CPSC to embed the constraints into the

heuristic function that guides the ―search‖ process. Specifically, CPSC strategically uses the set

of constraints to select the initial seeds for the clusters, to compute the distance and cost functions

to select the best cluster to grow next, and to select the best neighbor to add to the best cluster.

We have demonstrated that CPSC is a complete and optimal algorithm. While CPSC works with

www.manaraa.com

137

hard constraints, we have developed two extensions of CPSC – namely, CPSC* and CPSC*-PS

that work with both hard and soft constraints. These algorithms guarantee convergence. Thus,

while redistricting is a NP-Complete problem (Bodin, 1973) we have successfully made the use

of heuristic functions in order to achieve a feasible solution for this problem.

We have successfully applied the CPSC algorithm family to two difficult and important

problems: congressional redistricting and school district formation. We have also shown that

CPSC out performs other optimization approaches such as simulated annealing and genetic algo-

rithms. There are several other such applications that can be greatly benefited by using CPSC re-

districting algorithm. For example, electricity dispersion zones, traffic analysis zones, police pre-

cincts, etc.

In terms of future work, our immediate next step is to apply CPSC*-PS to a real applica-

tion dataset, and perform further evaluations of the algorithm, along with developing a paramete-

rized heuristic function that allows the user the flexibility to define a set of constraints, and along

with providing their description, define the constraints as hard or soft. We will also be imple-

menting the congressional redistricting problem more comprehensively by considering additional

constraints such as the must-link constraint for minority-population areas, and test the scalability

of our algorithm. In addition, we plan to consider other measures for compactness and testing

with different cost functions, and see the difference in the clustering results. CPSC may further be

benefitted by the use of the spatial characteristics such as topological relationships of the poly-

gons. In particular, we intend to apply our framework to water resource management and drought

mitigation making use of these additional features. There are also soft and hard constraints that

are temporal (or seasonal) that we will need to consider.

www.manaraa.com

138

Publications

This chapter appears in the following:

1. Joshi, D., Soh, L-. K., & Samal, A. (2009). Redistricting Using Heuristic-Based Polygonal

Clustering. IEEE International Conference on Data Mining, (pp. 830-836). Miami, FL.

2. Joshi, D., Soh, L-. K. & Samal, A. (under review). Redistricting using Constrained Polygonal

Clustering, submitted to IEEE Transactions on Knowlegde and Data Engineering in July

2010.

www.manaraa.com

139

Chapter 6: Spatio-Temporal Polygonal Clustering with Space

and Time as First-class Citizens

6.1 Introduction

The increasing numbers of tracking devices, sensors, and global positioning satellites have led to

the generation of gigabytes of spatio-temporal data with relative ease for a variety of geo-physical

variables. Detecting spatio-temporal clusters, i.e. clusters of objects similar to each other occur-

ring together across space and time, has important real-world applications. For example, under-

standing the earth‘s atmosphere and the various geophysical processes that occur across time has

been defined as a ―Grand Challenge‖ (Stolorz, 1995). Some important applications include cli-

mate change analysis, drought analysis, detection of outbreak of epidemics (e.g. bird flu), bioter-

rorist attacks (e.g. anthrax release), and detection of increased military activity (Neill, Moore,

Sabhnani, & Daniel, 2005). The detection and use of spatio-temporal clusters can enable us to

discover trends and patterns that will in turn enable us to learn from the past, and be better pre-

pared for the future (Aamodt, Samuelsen, & Skrondal, 2006).

Past research has focused on the discovery of spatio-temporal clusters by grouping ob-

jects with similar trajectories, detecting moving clusters, or discovering convoys of objects

(Hwang, Chien-Ming Lee, & Lee, 2008), (Jeung, M.L. Yiu, Jensen, & Shen, 2008), (Jeung, Shen,

& Zhou, Convoy queries in spatio-temporal databases, 2008), (Kalnis, Mamoulis, & Bakiras,

2005), (Yoon & Shahabi, 2009). All of this work is point-based and with the assumption that

these points are mobile. Detecting spatio-temporal clusters of phenomena such as drought and

disease outbreaks, however, is a fundamentally different problem as the geographic space is di-

vided into a set of polygons (e.g. states, counties, etc.), and the polygons themselves do not move

with the passage of time. However, a drought or disease may move across these fixed set of po-

lygons spreading across several counties with the passage of time.

www.manaraa.com

140

Therefore, the current techniques for detecting spatio-temporal clusters are inadequate for

the aforementioned problems because of the following reasons:

 The current techniques are all point-based where only the longitude and the latitude of the

object are used. While dealing with a polygonal dataset, if polygons, which are naturally

rich objects with topological and structural properties, are represented as points, a signifi-

cant amount of information is lost (Joshi, Samal, & Soh, A Dissimilarity Function for

Clustering Geospatial Polygons, 2009a), (Joshi, Samal, & Soh, Density-Based Clustering

of Polygons, 2009b). For example, the length of shared boundary between two polygons is

lost in point representation.

 These algorithms follow a time slicing approach; that is, snapshot clusters are formed at

each time stamp and then a comparison is made between the clusters across various time-

stamps to detect moving clusters. This approach translates to performing spatial clustering

at each time stamp, and therefore it does not cluster entities that occur across different

time stamps leading to an unbalanced treatment of space and time. While performing spa-

tio-temporal clustering, time must be treated as a ‗first-class citizen‘, i.e. time must be

given equal importance as space. This is important to accurately track the dynamic clus-

ters especially when clusters change significantly over time and space. An example is giv-

en in Section 6.2.3 to demonstrate the loss of information when giving more importance to

the spatial dimension as compared to the temporal dimension.

 Convoys (Hwang, Chien-Ming Lee, & Lee, 2008), (Jeung, M.L. Yiu, Jensen, & Shen,

2008), (Yoon & Shahabi, 2009) are discovered in an object dataset where the objects

move across space in time however their non-spatial attributes remain constant; for exam-

ple, a convoy of vehicles moving along a highway. But not all objects move across space

and time without changing their non-spatial attributes. For example, studying the move-

ment of drought clusters, while the underlying polygons may remain constant, their non-

www.manaraa.com

141

spatial attributes indicating the presence or absence of drought may change with time.

Thus, the convoy detection algorithms would not work because the objects themselves do

not move. Moreover, the attributes of the objects change.

In this chapter we present a spatio-temporal polygonal clustering algorithm known as the

Spatio-Temporal Polygonal Clustering (STPC) algorithm. STPC is based on the density-based

clustering principle as this clustering paradigm naturally adapts to concepts such as spatial auto-

correlation and Tobler‘s first law of geography– ‗All things are related, but nearby things are

more related than distant things‘ (Tobler W. , 1979)(see Section 6.2.1 for details). STPC takes

into account the spatial and topological properties of the polygons while taking into account the

spatial neighborhood of the polygons as done previously in (Joshi, Samal, & Soh, Density-Based

Clustering of Polygons, 2009b). Furthermore, while the current density-based algorithms (e.g.

DBSCAN (Ester, Kriegel, Sander, & Xu, 1996), P-DBSCAN (Joshi, Samal, & Soh, Density-

Based Clustering of Polygons, 2009b)) only take into account the spatial neighborhood of the ob-

ject being clustered at a particular time instant or time interval, we have re-defined the neighbor-

hood of a polygon to not only take into consideration the spatial neighborhood of the polygon, but

also the temporal neighborhood of a polygon. As a result of taking the spatio-temporal neighbor-

hood of a polygon into account, we are able to treat both space and time as ‗first-class citizens‘ –

a feat that the other algorithms are not able to achieve. Thus, STPC is able to discover spatio-

temporal polygonal clusters without detecting spatial clusters at each time slice. A unique prop-

erty of our algorithm is that it has the ability to discover spatio-temporal clusters with holes in the

spatial or temporal dimension.

We study the geospatial space that is divided into polygons. Thus the polygons them-

selves do not move in time, but their non-spatial attributes or properties may change with time.

We examine the accuracy and efficiency of our algorithms in drought analysis, by discovering the

spatio-temporal drought clusters in the state of Nebraska, in United States. Followed by which

www.manaraa.com

142

we discover the swine flu spread clusters within the state of California in United States, and final-

ly we discover spatio-temporal crime clusters within the city of Lincoln, Nebraska. As a part of

these experiments we show the effect of the different parameters of STPC, along with the robust-

ness and scalability of our algorithm. Furthermore, while doing the drought analysis we compare

and contrast the results of STPC with other spatio-temporal clustering algorithms presented in the

literature and described in Section 6.2.2. The experimental results are presented in Section IV.

We have shown that our algorithm outperforms other spatio-temporal clusters by retaining the

maximum information about the clusters across space and time, and preventing one cluster from

being split into two or more clusters. In other words, STPC is most capable of capturing big

shifts within the spatio-temporal clusters, and maintaining the history of the cluster.

The rest of the chapter is organized as follows. Section 6.2 presents a brief introduction to

the density-based principles as defined by (Ester, Kriegel, Sander, & Xu, 1996) and the related

work to spatio-temporal clustering. Section 6.3 goes over the framework for our spatio-temporal

neighborhood and the algorithm STPC. Section 6.4 presents our experimental results, and Section

6.5 gives our conclusion and future work.

6.2 Related Work

In this section we present a brief background on the principles of density-based clustering—on

which our STPC algorithm is grounded—and the state of the art in discovering moving clusters.

We also illustrate an example that demonstrates the difference in performing snapshot clustering

and detecting convoys, versus treating both space and time as first class variables and detecting

moving clusters.

6.2.1 Density-Based Clustering Principles

A density-based clustering algorithm hinges upon the assumption that a valid cluster must have

sufficient density. As suggested by Tobler‘s first law of Geography (Tobler W. , 1979) and prop-

www.manaraa.com

143

erties such as spatial autocorrelation (Zhang, Huang, Shekhar, & Kumar, 2003), phenomenon oc-

curring in space and time naturally adapt to the density-based clustering paradigm. Ester et al.

proposed a density-based clustering algorithm for point datasets, called DBSCAN. Here we list

the main concepts of density-based clustering for points as defined in (Ester, Kriegel, Sander, &

Xu, 1996). Let be a database of points.

Definition 1: (-neighborhood of a point) The -neighborhood of a point , denoted by

 , is defined by .

Definition 2: (directly density-reachable) A point is directly density-reachable from a

point wrt. if (1) and (2) (core point condition).

Definition 3: (density-reachable) A point is density reachable from a point wrt.

 if there is a chain of points such that for all : is di-

rectly density-reachable from .

Definition 4: (density-connected) A point is density connected to a point wrt. , and

if there is a point such that both, and are density-reachable from wrt. , . Den-

sity-connectivity is a symmetric relation. For density reachable points, the relation of density-

connectivity is also reflexive.

Definition 5: (cluster) A cluster wrt. is a non-empty subset of satisfying

the following conditions:

1. if and is density-reachable from wrt. and . (Maximality)

2. : is density-connected to wrt. . (Connectivity)

Definition 6: (noise) Let be the clusters of the database wrt. parameters

 , then we define the noise as the set of points in the database that do not belong to

any cluster , i.e. .

www.manaraa.com

144

The above density-based concepts are applied in the DBSCAN clustering algorithm that

is used by the traditional moving cluster and convoy detection algorithms on point datasets.

While applying the same principles of density-based clustering to polygons in the spatial and

temporal dimensions, we, have extended the idea of the -neighborhood of a point that takes into

account only the spatial neighborhood of the points to a spatio-temporal neighborhood of a poly-

gon that takes into account both the spatial and temporal neighborhoods of polygons. By consi-

dering the temporal neighborhood of the polygon, we treat time as a ‗first-class citizen‘ along

with space (see Section 6.3).

6.2.2 Detecting Spatio-Temporal Clusters

Below we discuss the state-of-art in clustering algorithms detecting moving clusters in space and

time. We discuss the Moving Cluster algorithm, the Coherent Moving Cluster algorithm, the Va-

lid Convoy Discovery algorithm, and the Cluster Over Time algorithm. Followed by which we

list the disadvantages of these algorithms, and explain how our approach is different.

The general approach followed by the well accepted Moving Cluster (MC) algorithm

(Kalnis, Mamoulis, & Bakiras, 2005) is as follows: A density-based clustering (e.g., DBSCAN) is

first performed on the moving objects at each timestamp to find snapshot density-connected clus-

ters of arbitrary shapes and then the intersection snapshot clusters appearing during consecutive

timestamps is detected as a moving cluster if they share at least a certain number of objects in

common which is defined with respect to a threshold

 where and denote two adjacent snapshot clusters at time and respective-

ly.

Jeung et al. (Jeung, M.L. Yiu, Jensen, & Shen, 2008) extended MC and proposed the Co-

herent Moving Cluster algorithm (CMC). CMC first performs density-based clustering at each

timestamp to find snapshot clusters of arbitrary shapes. The following two conditions are then

tested: first, a convoy must have clusters in at least consecutive time stamps (lifetime con-

www.manaraa.com

145

straint), and second, of the intersection of two consecutive snapshot clusters must have at least

objects in common. If both the conditions are true then it is detected as a convoy.

Yoon & Shahabi (Yoon & Shahabi, 2009) stated that the MC algorithms described above

have a critical problem with accuracy – they tend to miss larger convoys and retrieve invalid ones

where the density-connectivity among the objects is not completely satisfied. To overcome this

problem, the authors proposed the algorithm VCoDA (Valid Convoy Discovery Algorithm). This

algorithm works in two phases: first a set of all partially connected convoys is discovered from a

given set of moving objects using the PCCD algorithm (Yoon & Shahabi, 2009), and then the

density-connectivity of each partially connected convoy is validated using the DCVal algorithm

(Yoon & Shahabi, 2009) to obtain a complete set of valid convoys. The first phase of VCoDA

extends the CMC algorithm by scanning through the entire time span, and updating a set of densi-

ty connected snapshot clusters incrementally by consecutive ones with sufficient objects in com-

mon under four operations (i.e., insert, extend, delete, and return). This approach is further ex-

tended in the second phase such that the density-connectivity of each partially connected convoy

is incrementally verified at every timestamp either by immediate, single re-clustering, or recur-

sive validation.

In (Lai & Nguyen, 2004) a simple set of formulas was proposed to predict which paired

objects will move in the -neighborhood of each other. From these pair-wise -neighborhood re-

lationships, a COOT (Core Object Over Time) algorithm is constructed to identify which objects

will become core objects of future density-based clusters. This information reveals where, when,

and how long the dense concentrations of objects may happen. Contents of density-based clusters

over time can also be constructed using the Clusters Over Time (COT) algorithm with higher

space and computation cost.

The first three algorithms mentioned above apply a time-slice approach i.e. they first per-

form spatial clustering using DBSCAN at each time stamp in order to discover spatial clusters.

www.manaraa.com

146

These are then compared consecutively in the presence of some user defined constraints, and spa-

tio-temporal clusters or moving clusters are detected. While VCoDA is an improvement over the

other moving cluster discovery algorithms (MC and CMC), as this algorithm discovers the maxi-

mum number of valid convoys or moving clusters, some post-processing of the results is required

to prune out the invalid convoys. The authors in (Lai & Nguyen, 2004) claim to move away from

the time-slice approach by detecting core objects over time. However, their algorithm – COT –

fails to do so completely. This is because they compare the core objects previously detected

across small time intervals to detect spatio-temporal clusters across that particular time interval.

Thus one may argue that the algorithm detects several incomplete clusters, i.e. several small clus-

ters which should in fact be a part of the same cluster are detected. Moreover all the above de-

scribed algorithms assume that the dataset consists of objects with similar non-spatial attribute

values. They cannot distinguish between objects that lie within the -neighborhood of each other

but are not similar to each based on their non-spatial attributes. While this may seem trivial, how-

ever, producing clusters using the density-based scheme that have uniform non-spatial attributes

cannot be simply implemented using a pair-wise distance measurement methodology. This is be-

cause while density-connectivity is a transitive property flowing within the cluster from one ob-

ject to the next, similarity between objects based on non-spatial attributes is not a transitive prop-

erty. Finally all the above mentioned techniques are all point-based, and cannot be directly ex-

tended to polygons.

We adopt the idea of producing spatio-temporal clusters using the density-based cluster-

ing methodology in our approach as well. However, instead of performing spatial clustering

across each time interval, we follow an approach that allows us to detect clusters spanning across

the spatial and temporal dimensions simultaneously. We also incorporate a strategy that allows

us to detect clusters with similar non-spatial attributes. Finally our approach is designed to clus-

ter polygons instead of points, even though it can be easily modified to be implemented for point

www.manaraa.com

147

datasets as well. In Section 6.4 we present a comparison of these point-based algorithms with our

polygon – based algorithm STPC.

6.2.3 An Example

Consider the polygons as shown in Figure 57. The orange polygons represent the counties

with drought at each time stamp. The centroids of the counties are marked as dots.

Figure 57: Sample dataset of polygons with drought at each time stamp . The centroids are shown as dots within each

polygon.

Traditional trajectory clustering algorithms discussed on the previous sub-section per-

form snapshot density-based clustering (using algorithms such as DBSCAN (Ester, Kriegel,

Sander, & Xu, 1996)) at each timestamp. Due to the snapshot clustering approach, and constraints

such as the minimum number of objects () – i.e. the minimum number of common points that

must be present within the two consecutive clusters and the lifetime constraint () – i.e. the min-

imum number of time stamps across which the cluster must exist, sudden changes that may hap-

pen in the cluster are not captured as part of the evolving cluster and instead viewed as the stop

points of the cluster. As a result, the cluster breaks into multiple clusters leading to loss of infor-

mation about the structure and contents of the cluster. For example, for the drought polygons

shown in Figure 57, if we set m = 2 (i.e., the minimum number of objects), and k = 2 (i.e., the

lifetime constraint), two clusters are detected as shown in Figure 58(a). The orange polygons in

www.manaraa.com

148

Figure 58(a) are the drought polygons that do not get included in any cluster due to the con-

straints of minimum number of points that must be common within each sub-cluster formed at

each time stamp and the minimum lifetime constraint. Thus, it can be seen that information may

be lost using the techniques described in the previous section.

Our approach, on the other hand, gives time equal importance as space, and performs

spatio-temporal clustering across time and space concurrently. As a result, two spatio-temporal

clusters are detected (Figure 58(b)). In a way, our approach considers not just n polygons, i.e. the

number of polygons at any timestamp, but n × t (i.e., n polygons multiplied with t time stamps)

objects, and clusters them together without any bias. As a result no information is lost as com-

pared to the traditional approach. For example, the cluster (C2) shown in Figure 58(a) becomes a

part of a bigger cluster – cluster C2 in Figure 58(b). This information was not captured by the

point-based approaches because there were none/or only one common points within the snap-shot

clusters at time stamp t1, t2 and time stamp t4. However, because of the use of a spatio-temporal

neighborhood as described in Section 6.3, the complete cluster is detected using our proposed

approach. Furthermore, the second cluster (C1) detected by our approach is also more complete

as compared to the cluster C1 shown in Figure 58(a). This is because of considering the polygons

spatial and topological properties into account that were lost in the point representation.

 (a) (b)

Figure 58: (a) Point-based spatio-temporal clusters formed using snapshot clustering approach. (b) Polygonal spatio-

temporal clusters using time as a first-class citizen.

www.manaraa.com

149

6.3 Spatio-Temporal Polygonal Clustering

Consider a set of polygons that exist in space and time. Each polygon has three categories of

attributes associated with them. The first category is the space ‗where‘ the polygon exists and is

referred to by a set of spatial attributes, the second category is the time ‗when‘ the polygon exists

and is referred to by a set of temporal attributes, and the third category is ‗what‘ the polygon is,

and is referred to by a set of non-spatial, non-temporal attributes. A polygon that can be

represented using all the above three categories of attributes is known as a spatio-temporal poly-

gon.

In the following section we present the density-based concepts for spatio-temporal poly-

gons that are based on the density-based concepts for points presented by Ester et al in (Ester,

Kriegel, Sander, & Xu, 1996), followed by our algorithm STPC that is used to detect spatio-

temporal clusters. Furthermore, each spatio-temporal cluster is dynamic in nature, i.e. each may

have a different lifetime, and each cluster may spread across space with the passing of time diffe-

rently. In order to capture these movements of the spatio-temporal clusters discovered by STPC,

we first define the various types of movements possible for a spatio-temporal polygonal cluster,

and then present the DMSTC algorithm that discovers the movements of a spatio-temporal cluster

that it has undergone in its lifetime.

6.3.1 Density-Based Concepts for Spatio-Temporal Polygons

Given below are the definitions for the density-based concepts for spatio-temporal polygons.

Definition 1: A spatio-temporal polygon
 is a polygon that exists at the location in-

dexed by and at the time interval indexed by . (Henceforth, all polygons are spatio-temporal

polygons unless specified otherwise.)

Definition 2A: A spatial neighbor of polygon
 is any polygon

 such that

 where

 is any distance function that computes the physical distance

www.manaraa.com

150

between two polygons. Note that the temporal aspect is constant or reduced to a fixed interval or

time instant in this case.

 is true iff

 and .

Definition 2B: The spatial neighborhood of a polygon
 given ,

 , is the set of

the spatial neighbors of the polygon, that is

 .

Definition 3A: A temporal neighbor of a polygon
 is a polygon that occupies at least

some of the space indexed by ,
 , at the time intervals where is a user-defined pa-

rameter to define the extent of the temporal neighborhood of a polygon. Note here, in contrast to

the spatial neighborhood, the spatial dimension is instead held to a constant space.

 is true iff

 .

where

 refers to the area covered by the polygon

 at time instant .

For example, for a static set of polygons such as geospatial polygons, if , the tem-

poral neighbors of polygon
 is the set of spatio-temporal polygons

 .

Definition 3B: The temporal neighborhood of a polygon
 given ,

 , is the

set of the temporal neighbors of the polygon, that is

 .

Definition 4: The spatio-temporal neighborhood of polygon
 given and ,

 , is the union of the spatial neighborhood and the temporal neighborhood .

Figure 59 shows the spatio-temporal neighborhood of polygon
 . The red polygon is

the polygon
 , and the green polygons form the spatio-temporal neighborhood of the polygon

 , taking and .

www.manaraa.com

151

Figure 59: Spatio-temporal neighborhood (green polygons) of polygon
 (red polygon)

Definition 5: Core spatio-temporal polygon is a polygon that has at least MinPoly num-

ber of polygons in its spatio-temporal neighborhood i.e
 .

Definition 6: A spatio-temporal (ST) polygon

 is directly density-reachable from

another spatio-temporal polygon

wrt. if (1)

 , (2)

 .

Definition 7: A polygon

 is density reachable from another polygon

wrt.

 if there is a chain of ST-polygons

 such that

for all :

 is directly density-reachable from

.

Definition 8: A polygon

 is density connected to another polygon

wrt.

 and if there is a polygon
 such that both,

 and

are density-reachable

from
 wrt. . Density-connectivity is a symmetric relation. For density reacha-

ble polygons, the relation of density-connectivity is also reflexive.

Definition 9: A spatio-temporal cluster wrt. is a non-empty subset of

 satisfying the following conditions:

1.

 if

 and

 is density-reachable from

 wrt. then

 . (Maximality)

www.manaraa.com

152

2.

 :

 is density-connected to

 wrt. . (Connectivity)

3.

 ,

 (Strong Uniformity) or

 ,

 . (Weak Uniformity)

where

 is the distance between the non-spatial attributes of the polygons and is

computed using the Euclidean distance function, and is a user-defined input parameter.

Definition 10: Let be the clusters of the database wrt. parameters

 , then we define the outliers as the set of polygons in the database that do not

belong to any cluster , i.e.

 .

Figure 60: A Drought Spatio-Temporal Cluster (red polygons)

6.3.2 Spatio-Temporal Polygonal Clustering (STPC) Algorithm

In order to detect spatio-temporal clusters, we propose a new algorithm called Spatio-Temporal

Polygonal Clustering (STPC) algorithm. Unlike other algorithms as defined in Section 6.2.3,

STPC does not perform density-based clustering at each time stamp. STPC (presented in Figure

61), instead, uses the density-based concepts defined above for spatio-temporal polygons in order

to detect a spatio-temporal cluster that extends both in space and over time, thus treating time as a

first-class citizen along with space, and removing the need to find the intersection of snapshot

clusters across consecutive time stamps.

www.manaraa.com

153

Given a dataset of spatio-temporal polygons STPC begins with a polygon
 that

has not been assigned to any cluster previously. If
 meets the necessary conditions to be defined

as a core spatio-temporal polygon, it is assigned a new cluster CID. It then calls the expandST-

Cluster method that examines each polygon that falls in the spatio-temporal neighborhood of

based on . If a spatio-temporal neighbor has similar non-spatial attributes to
 , and to

every other spatio-temporal polygon that has already been assigned to cluster CID, i.e. if

 , the neighbor is assigned to the same cluster as

 , and the expandST-Cluster

method is subsequently called recursively on this neighbor. This process is repeated as long as

there exists a polygon that has not been assigned to a cluster, or classified as an outlier.

It should be noted that the test

 is valid only in the case of categorical

non-spatial attributes and the case reduces to a strong uniformity one For example, if the poly-

gons are classified as ―drought‖ or ―no-drought‖ polygons, and

 ; i.e., if either

both the polygons

and

are classified as drought polygons, or they both are classified as no-

drought polygons, only then both the polygons will be assigned to the same cluster. In order to

handle non-spatial attributes having continuous values or ordinal values, the test

can be used instead (for weak uniformity), where is a user-defined parameter.

Since our algorithm follows the structure of the density-based clustering algorithm

DBSCAN, the time complexity of our algorithm is the same as DBSCAN which is O(n
2
) without

the use of an indexing structure, where n is the number of data points. If an indexing structure

such as a R* tree is used, then the time complexity will be reduced to O(nlogn). Looking more

closely, we find that the time complexity of our algorithm can be re-represented as O(t·n log

(t·n)), where t denotes the number of time stamps, whereas the time complexity for the conven-

www.manaraa.com

154

tional piecemeal approach is O(t·(n log n))). In most applications, ; hence both the algo-

rithms will have a time complexity of O(n log n). However, STPC will typically run slower.

6.3.3 Selecting Input Parameters

In order to select the appropriate for a polygonal dataset, one of the following strategies may be

followed:

1. Using a distance function such as the Hausdorff distance function, compute the pair-wise dis-

tance between the polygons within the dataset. Based on the set of the pair-wise distances,

may be selected as the: mode of the set, the median distance value within the set, or the aver-

age distance. However, please note that a bigger value may result in the aggregation of two

or more clusters within the same cluster.

Figure 61: The Spatio-Temporal Polygonal Clustering (STPC) Algorithm with Strong Uniformity.

STPC
Generate CID = 1
For each polygon

 in P
If

 is not assigned to any cluster then

If
 is a core spatio-temporal polygon

Assign
 to cluster CID

Call expandST-cluster (

, CID)
Increment CID by 1

Else
Assign

 as an outlier.
End If

End For

expandST-cluster (

, CID)

Get the spatio-temporal neighborhood of

For each polygon

 in

If

is not assigned to any cluster then

For each

If

 then (Strong Uniformity)

Assign

 to cluster CID

Call Expand ST-cluster (

 CID)

End if
End For

End if
End for

www.manaraa.com

155

2. Based on the knowledge of the dataset, the user may identify two polygons that must never be

clustered together. Compute the geographic distance between these polygons, and then set

to a value smaller than the resulting distance between the two polygons.

In order to select the appropriate , the user needs to determine if the domain is such that

the cluster may disappear and re-appear over the same spatial extent within a certain period of

time. In such cases selecting an will be more appropriate. However, if the domain is such

that once the cluster disappears at a certain time stamp or time interval, the same cluster cannot

re-appear, then selecting will be sufficient.

6.3.4 Properties of a Spatio-Temporal Polygonal Cluster

A spatio-temporal cluster
 consists of:

1. A set of spatio-temporal (ST)-slices

 , where and such

that represents the set of polygons

 that form each ST-slice at fixed time

interval index . Henceforth, for simplicity each ST-slice will be represented as
 . The

space occupied by a ST-slice

 .

2. A set of temporal-spatial (TS)-slices

 , where such that

represents the set of polygons

 that form each TS-slice at fixed space index

 . Henceforth, for simplicity each TS-slice will be represented as

.

Axiom 1: If , then

 , i.e. the intersection of the space of two consecu-

tive ST-slices of a spatio-temporal cluster
 cannot be empty. However, if

then

 maybe , i.e. if , then the intersection of the space of two consecu-

tive ST-slices of a
 maybe empty.

Proof: We prove the above axiom in two parts. First, the proof for – If ,

 is as follows:

www.manaraa.com

156

The spatio-temporal cluster
 begins by selecting any random spatio-temporal polygon

 , and checking to see if it is a core polygon. If the polygon is indeed a core polygon, its spatio-

temporal neighborhood is extracted from the dataset and assigned to the same cluster as the poly-

gon
 itself. Next step is to check if any of the spatial or temporal neighbors are core polygons

themselves, and if yes, their neighbors are extracted from the dataset as well, and assigned to the

same cluster as
 . This process goes on until no other spatio-temporal polygon gets assigned to

the same cluster as
 anymore. Thus, when the first polygon –, polygon

 , gets assigned to the

cluster
 , along with its spatio-temporal neighbors, the cluster

 will consist a maximum of

three ST-slices. The first ST-slice will consist of only the temporal neighbors of polygon
 at

time instant , the second ST-slice will consist of the spatial neighbors of the polygon
 and

the polygon
 itself (i.e., at time t), and the third ST-slice will consist of the temporal neighbors

of the polygon
 at time instant . As defined before, the temporal neighbors of the polygon

 are the polygons that may exist at time instances , and that occupy at least some of the

space that was occupied by
 . Thus the intersection of space occupied by any two consecutive

ST-slices of a spatio-temporal cluster
 cannot be empty, i.e.

 . Hence

proved.

Second the proof for If , then

 maybe is as follows:

If , when the first polygon, polygon
 , gets assigned to the cluster

 , along with

its spatio-temporal neighbors, the cluster
 will consist a maximum of ST-slices. How-

ever, as the polygon
 may be designated as a core polygon if it has the required density of Min-

Poly polygons taking into consideration its spatial neighbors and temporal neighbors across

time intervals, it may happen that temporal neighborhood of polygon
 may be empty at time

interval . Thus, in this case, the intersection of ST-slice of cluster
 at time interval and at

time interval will be empty. Hence proved.

www.manaraa.com

157

Based on axiom 1, the following properties of a spatio-temporal cluster (ST-cluster) can

be deciphered:

1. If , then a ST-cluster is contiguous in the temporal dimension

2. If , then a ST-cluster may lose its temporal contiguity, that is the spatio-temporal

cluster may disappear and re-appear at the same location within its lifetime.

6.4 Experimental Analysis

In order to analyze and show the robustness of our algorithm STPC, we first compare its results

with other spatio-temporal cluster detection algorithms. Further we study the properties of other

parameters of STPC by applying it to the swine flu dataset for the state of California. Finally, in

order to show the scalability of our algorithm we have applied it to the crime dataset for the city

of Lincoln, NE.

6.4.1 Comparative Analysis using the Drought Dataset

In this section we compare and contrast STPC with 4 other spatio-temporal cluster detection algo-

rithms. These are the MC, CMC, VCoDA, and COT algorithms (see Section 6.2 for a brief de-

scription of these algorithms). We have applied all five algorithms to a real-world application that

aims at finding moving drought clusters over time and space. For our comparative study, we

have used the drought dataset for the state of Nebraska.

Dataset Description: The state of Nebraska has 93 counties. At the end of each week, the

U.S. Drought Monitor determines whether each county is in a state of drought based on various

measurements of the water cycle. Each county may have regions that experience different levels

of drought – severe drought, extreme drought, etc. For our experiments we only take into account

whether a county has drought or no drought as a binary decision. 20 weeks of data from Jan 2009

to June 2009 was used for this experiment.

www.manaraa.com

158

Figure 62: (a) Point representation of drought counties of Nebraska - Dataset for the MC and CMC algorithms (b)

Counties of the state of Nebraska – Dataset for the STPC algorithm. The discrete time scale for both the datasets is

weekly.

The STPC algorithm has been designed to handle polygonal datasets and thus its input is

the set of polygons as shown in Figure 62(b). The MC and the CMC algorithms on the other

hand, can only handle point datasets. Furthermore, Both MC and CMC can only handle one class

or label of data points at a time. That is, they cannot distinguish between drought and no- drought

clusters. Thus, the input needs to be further filtered to contain only the points representing the

counties with droughts at each timestamp. Therefore, the input to both these algorithms is shown

in Figure 62(a), where each polygon is represented as a point using the centroid of the polygon.

Results: To evaluate our results, we have used as ground truth the drought monitor maps

(http://drought.unl.edu/dm/archive.html) produced by the U.S. Drought Monitor (Figure 63). The

drought maps for Nebraska from Jan 2009 to June 2009 show that there are three drought clusters

and one no-drought cluster.

Figure 63: Sample drought monitor maps from http://drought.unl.edu/dm/archive.html showing the three drought clus-

ters.

http://drought.unl.edu/dm/archive.html
http://drought.unl.edu/dm/archive.html

www.manaraa.com

159

As defined in Section 6.2.2, the MC algorithm takes as input the parameters , , and

 . For our experiments, we have used . The CMC

algorithm takes as input the parameters , , and . For our experiments, we have used

 . VCoDA takes as input the parameters , , and

 . For our experiments, we have used . The STPC algorithm is ap-

plied using . The COT algorithm only takes as

input the parameters , and . For our experiments, we have used

 . Please note that was selected by computing the pair-wise Hausdorff distance

between all the polygons in the dataset, and then finding the mode of the all the distance values.

Using the parameters aforementioned, the MC algorithm discovers 5 drought clusters, the

CMC algorithm discovers 4 drought clusters, VCoDA discovers 7 drought clusters, STPC dis-

covers 3 drought clusters along with one no-drought cluster, and the COT algorithm discovers 8

drought clusters. Based on the number of drought and no-drought clusters, only the STPC algo-

rithm produces the results same as the ground truth. Furthermore, other than STPC, none other

algorithm is able to discover the no-drought cluster because they do not have the ability to distin-

guish between the objects being clustered based on their non-spatial attributes. Finally, when we

compared the clusters discovered by STPC with the ground truth, we found that they were the

same clusters. The result obtained by STPC is shown in Figure 64.

Upon comparing the results of STPC with the clusters obtained by other algorithms men-

tioned above, we found that other algorithms discovered clusters that we indeed part of the clus-

ters discovered by STPC. But none of the other algorithm successfully discovered complete clus-

ters as found at STPC and shown in Figure 64. For example, the trailing end of cluster 1 (C1)

shown in Figure 9 was not discovered by any other algorithm as with only one polygon at each

time stamp the density condition is not satisfied. However, as STPC is based on the spatio-

temporal neighborhood of a polygon rather than only the spatial neighborhood of the polygon,

www.manaraa.com

160

even with a single polygon at each time stamp, the density condition is satisfied. Similarly, the

third cluster discovered (C3 in Figure 64) by STPC is divided into two or more clusters by every

other algorithm because of the extreme density changes within the cluster from one time stamp to

another. The comparison of the results produced by MC, CMC, VCoDA, STPC and COT is fur-

ther demonstrated in Figure 65 where the charts map the movements of the clusters across space

and time. The charts show the number of polygons that belong to a cluster at a particular time

stamp. These help to further visualize the density changes occurring within each cluster with the

passage of time. VCoDA and COT algorithms discover clusters with constant density only, the

MC and CMC algorithms are more robust to fluctuating densities, but even these algorithms are

not as flexible as STPC which can capture sudden shifts most effectively.

Figure 64: Result of the STPC algorithm – The three smaller clusters are the drought clusters

Furthermore, upon visually inspecting the charts in Figure 65 we can better describe the

dynamics of the clusters produced by the various algorithms. For example, for the three clusters

tracked by STPC: (1) cluster C1 remains constant for some time and then contracts, (2) cluster C2

remains constant during its lifetime, and (3) cluster C3, after remaining constant for three weeks,

contracts to only two polygons and then after expanding a little, suddenly expands across many

polygons. This information on the cluster dynamics provides users with another level of insight

for decision making. For example based on this dataset one may decide to track cluster C3 more

www.manaraa.com

161

closely to investigate the reasons for the contraction and the subsequent expansion, such as water

usage and allocation, and corresponding mitigation policies.

Figure 65: Cluster densities across space and time as discovered by the MC, CMC, VCoDA, STPC, and COT Algo-

rithms for the NE drought dataset

6.4.2 Application on Flu Dataset

In order to show the robustness of our algorithm we have applied STPC to the swine flu dataset

for the state of California. In this experiment we observe the properties of the two main parame-

www.manaraa.com

162

ters of STPC – namely where dictates the possible extent of the spatial neighborhood

and defines the possible extent of the temporal neighborhood.

Dataset Description: The dataset for this experiment comprises of the counties of the

state of California on a weekly temporal scale from May 28, 2009 to July 16, 2009. Thus the to-

tal number of polygons in this dataset is where is the total number of counties

in California, and 8 is the total number of weeks for which the data about the counties is col-

lected. The data that is the non-spatial attributes, for this experiment is the number of new swine

flu cases discovered in each county during each time interval. However, we convert the dataset

into categorical data by changing the number of new swine flu cases greater than one to 1, and

number of new swine flu cases less than one to 0.

Results: For this experiment we applied STPC on the California swine flu dataset using

different values of . The and parameters remain the same for all the experi-

ments as we are using a categorical dataset in which there can be the strong uniformity case

where the non-spatial distance between polygons can only be zero, i.e. . We first applied

STPC using . Here is the mode of the

pair-wise Hausdorff distance values between the polygons within the dataset. The result is that

we discover 5 spatio-temporal clusters of new swine flu cases. The result is shown in Figure 66.

Next, we applied STPC using . Here

is the median of the pair-wise Hausdorff distance values between the polygons within the dataset.

The result is that we discover one spatio-temporal cluster of new swine flu cases. The result is

shown in Figure 67. Finally, we applied STPC using .

The result is that we discover 5 spatio-temporal clusters of new swine flu cases. The result is

shown in Figure 68. Upon comparing the clusters shown in Figures 66 and 67 we can see that

more polygons with new swine flu cases are included in the spatio-temporal cluster shown in

Figure 67. Thus when using a smaller we can detect more clusters (Figure 66), but there may

www.manaraa.com

163

be some polygons with the same non-spatial attributes as the polygons within the clusters that are

not included within the cluster. On the other hand, upon comparing Figures 67 and 68 we can see

that the same number of polygons are included in the spatial-temporal clusters in both the cases,

even though the number of clusters discovered in Figure 68 are much more than the number of

clusters discovered in Figure 67. Finally, upon comparing the clusters shown in Figure 10 and

Figure 68, we find the same number of clusters, but the total number of polygons included in the

clusters in Figure 68 is more than Figure 66. This can especially be noted in cluster C1 in both

the figures. In Figure 68 we can see that cluster C1 is detected much earlier than in Figure 66.

This information was lost in the cluster discovered in Figure 66 because of the parameter

which stipulates spatio-temporal clusters with temporal contiguity. Thus, if we use a small but

increase the temporal extent for the spatio-temporal neighborhood of a polygon by selecting

 there is a greater chance of including more polygons with the same non-spatial attributes

within the spatio-temporal clusters discovered.

Figure 66: Clusters discovered by STPC with , , .

www.manaraa.com

164

Figure 67: Clusters discovered by STPC with , , .

Figure 68: Clusters discovered by STPC with , , .

6.4.3 Application on Crime Dataset

Dataset Description: For this experiment we obtained the dataset from the chief of police of the

city of Lincoln, NE, USA. The dataset consists of the time, date, type, and the location of the

crime committed over five years between 2005 and 2009. The total number of crimes recorded

is 153,404. The city of Lincoln has 186 census block groups. These form the base polygons for

our experiments and are shown in Figure 69. The temporal scale used for this set of experiments

is daily. The total number of polygons within the dataset is thus 339,450 .

For each polygon the total number of different types of crimes that occur on each day within the

polygon are considered as the non-spatial attributes of the polygons.

www.manaraa.com

165

 (a) (b)

Figure 69: (a) Census block groups in the city of Lincoln, NE (b) Crime locations for the years of 2005 – 2009 in the

city of Lincoln, NE.

Results: In the following we show the analysis of the spatio-temporal clusters dsicovered

by STPC for one type of crime – assaults. The total number of assault cases in the city of Lincoln

from January 2005 until December 2009 is 22,314. The total number of clusters discovered by

STPC using different parameter values is listed in Table 18 along with the average number of

polygons per cluster and the range of polygons within the clusters. Table 18 shows that the input

parameter of has a big effect on the clustering results, as the smaller this number is, a a

larger number of clusters will be detected. For example, when , the number of

clusters discovered for different values is 1132 and 1216. Whereas, when , the

number of clusters discovered are 0 and 121. This is because with a larger we are forc-

ing the core polygons to be closer to the center of the entire dataset with a large number of sur-

rounding polygons. On the other hand, with a smaller , a core polygon may also lie near

the periphery of the polygonal dataset. Furthermore, with , the density may be

achieved only by taking into account the temporal neighbors of the polygons, without having any

spatial neighbors. The number of clusters discovered is further augmented by the value of . A

larger will allow distant polygons to be included within the same cluster, and therefore allow

more number of clusters to be discovered. Thus when MinPoly = 20, and , no

clusters are detected. This is because no core polygon is discovered that satisfies this criteria.

www.manaraa.com

166

However, when MinPoly = 20, and , 121 clusters are detected, as now there are

polygons within the dataset that satisfy this criteria.

Table 18: Assault clusters discovered by STPC using different parameter values

 # clusters Average # polygons per

cluster

Range of polygons per

cluster

0.65 miles 1 5 3 1132 5.5 0.93

0.65 miles 1 5 10 123 15.0 0.78

0.65 miles 1 5 20 0 NA NA

1.3 miles 1 5 3 1216 8.7 0.96

1.3 miles 1 5 10 301 21.6 0.88

1.3 miles 1 5 20 121 29.8 0.73

1.3 miles 1 5 30 19 35.8 0.41

Further we closely inspect a few selected assault clusters. These are shown in Figure 70.

Each cluster is represented by a two-dimensional graph. The x-axis denotes the spatial dimension

where each polygon is represented using its identification number. Thus the number 98 along the

x- axis represents the space occupied by the polygon with the ID 98. The y-axis shows the tem-

poral dimension of the spatio-temporal clusters. As the crime dataset is from the time period of

January 2005 until December 2009 on a daily scale, each day is represented using a unique num-

ber. Thus, the number 263 on the y-axis refers to the day of September 20, 2005. To interpret

each graph in Figure 70, let us look at Cluster 4. This cluster expands from day 264 to day 269,

and covers a total of 26 polygons (IDs: polygons with IDs 49, 56 – 57, 92, 94 – 99, 101 – 105,

107 – 108, 110 – 111, 114 – 117, 119, 122, 134). Furthermore, moving from day to 264 to 265,

for example, we can see that only one polygon with ID 95 continues to experience cases of as-

sault, whereas the other polygons (IDs: 56, 94, 97, 119, and 122) do not have any assault cases,

instead new polygons (IDs: 99, 104 – 105, and 134) experience assault cases.

From Figure 70 we can see that the clusters 4, 6, and 9 roughly spread across the same set

of polygons, however occur a year apart from each other. As they are all assault clusters, we can

decipher that these assault cases occurred on the same space during the same time each year for

three consecutive years of 2005 to 2007. The polygons involved in these clusters are shown in

www.manaraa.com

167

Figure 71 which shows the spatio-temporal Cluster 6. A closer inspection of these polygons

shows that these polygons are along the heart of the downtown of Lincoln, NE, where most of the

bars are located. Furthermore, the time period of mid-September until the beginning of October

is when the fall semester at the University of Nebraska-Lincoln which is located close to the

downtown area is in full swing, and the weather is most favorable for people to be outdoors. It is

interesting to note that the clusters seem to move to an earlier time period (from September to

July) in the following two years (2008 and 2009).

6.5 Conclusion and Future Work

We have presented a spatio-temporal clustering algorithm called Moving Polygonal Clustering

(STPC) that intrinsically incorporates time in the clustering process of spatio-temporal polygons.

The STPC algorithm is based on the density-based clustering principle as this clustering paradigm

naturally adapts to concepts such as spatial autocorrelation and Tobler‘s first law of geography.

Furthermore, our algorithm treats time as a first class citizen, and thus gives equal importance to

both space and time.

A unique property of our algorithm is that it naturally maintains the history of a cluster.

Thus if a cluster fragments into two or more smaller clusters, our algorithm will track the frag-

mented clusters to the original cluster as long as the fragmented cluster has a temporal neighbor

that belongs to the original cluster. Also, if a cluster suddenly contracts and then expands imme-

diately, it will be divided into two or more smaller clusters by MC or CMC. STPC, on the other

hand, will be able to capture the sudden movements within a cluster, and will thus be able to re-

tain a unified structure.

As a part of future work, we will test the scalability of our algorithm by taking into con-

sideration the drought dataset for the whole of Unites States of America. Further, we will perform

experiments with different values for , i.e. change the extent of the temporal neighborhood to

see the effect. One possible outcome would be the concatenation of two or more spatio-temporal

www.manaraa.com

168

Figure 70: Selected assault spatio-temporal clusters discovered by STPC using the parameter values:

 with space shown as one-dimension along the x-axis, and time

along the y-axis.

www.manaraa.com

169

 September 28, 2006 September 29, 2006

October 2, 2006 October 3, 2006

October 5, 2006 October 6, 2006

Figure 71: The spatio-temporal Cluster 6 in Figure 14 spanning from September 28, 2006 until October 6, 2006

clusters into one spatio-temporal cluster with a time gap in between where the cluster disappears

and then re-appears within the same spatial vicinity. Also, currently STPC detects moving clus-

ters across fixed space. We plan to extend STPC to consider moving polygons such as cells of

human activities or viruses that could move spatially and change their shapes. In addition, we will

extend our framework to detect movements of a cluster in other dimensions than space and time.

For example, the varying intensity of drought within spatio-temporal drought clusters.

www.manaraa.com

170

We are also working on developing a stand-alone java 3D application to visualize the 3-D

clusters in the three dimensional space. Next, we will develop a tool to be added in the ArcGIS

toolbox that will allow users to form and visualize 3-D clusters within the ArcMap interface.

Publications

This chapter appears in the following:

1. Joshi, D., Samal, A., & Soh, L-. K. (under review), Detecting Spatio-Temporal Polygonal

Clusters Treating Space and Time as First Class Citizens, submitted to GeoInformatica.

www.manaraa.com

171

Chapter 7: Analysis of Movement Patterns in Spatio-Temporal

Polygonal Clustering

7.1 Introduction

Increasingly spatio-temporal data are being collected as part of systematic environmental moni-

toring programs. Advances in automated spatial data collection technologies such as geographic

positioning systems, satellites, and sensors recording climatic conditions have enabled standar-

dized measurements to be taken for the same location at regular time intervals. A growing interest

in monitoring the human and physical environment has led to the production of spatially and

temporally referenced data sets (Robertson, Nelson, Boots, & Wulder, 2007). However, the cur-

rent state-of-the-art in storing and analyzing the spatio-temporal datasets treats time as an addi-

tional dimension where the spatial data is stored separately for each time stamp. This approach

makes it difficult to further process the data in order to deduce meaningful information from the

dataset especially across the temporal dimension. Thus further work, which treats time as a

―first-class citizen‖ needs to be done in order to better organize the spatio-temporal datasets, al-

lowing meaningful information across both the spatial and temporal domains to be derived easily.

For this purpose novel algorithms need to be developed to automate the identification, representa-

tion and computation of geographic dynamics (Yuan, 2010).

Geographic dynamics refer to the changes that occur across both the spatial and temporal

dimensions. For example, within the framework of spatio-temporal data analysis spatial diffusion

of various phenomena such as drought, disease, declining/increasing house prices have been ex-

tensively studied (Mayer, 2000), (Roehner, 2002). For example when cases of flu are observed

within a neighborhood, it is very likely that in the near future more cases of flu will be observed

within the surrounding neighborhoods. In order to the study the spread of such events, detecting

spatio-temporal clusters of polygons (Joshi, Samal, & Soh, Detecting Spatio-Temporal Polygonal

www.manaraa.com

172

Clusters Treating Space and Time as First Class Citizens, Under Review) such as counties or cen-

sus tracts can be an important analysis technique. This is because the study of the clusters can

help us in the classification of areas experiencing similar phenomenon across a period of time,

along with performing trend analysis and making predictions about the future occurrence of

event. However, the current state-of-the-art is lacking in techniques for analyzing the changes

that may occur within the spatio-temporal clusters across their spatial and temporal dimensions

equally, and formalizing their properties. For example, in order to perform trend analysis and

make predictions it will be very helpful if we can study the movements – such as expansion, dis-

placement and convergence – of the spatio-temporal clusters. However, such movements have

not been defined formally, neither any other statistics have been defined to quantitatively measure

the changes occurring within the spatio-temporal cluster across space and time while treating both

space and time as first-class citizens.

In this chapter we present novel techniques for the analysis of polygonal spatio-temporal

clusters. For this, we first present a formal framework for treating a polygonal spatio-temporal

cluster equally in the spatial and the temporal dimension. Our framework represents and analyzes

the polygonal spatio-temporal clusters in two different ways – slicing across the spatial dimension

keeping time constant to produce spatio-temporal (ST)-slices), and slicing across the temporal

dimension keeping space constant to produce temporal-spatial (TS)-slices). A simple example of

a spatio-temporal cluster, and its ST-slices and TS-slice, is presented in Figure 72. This novel

outlook allows us to not only observe the changes in the members of the spatio-temporal cluster

across the spatial dimension (i.e. observe the movement across the spatial dimension), but also

observe the changes in the members of the spatio-temporal cluster across the temporal dimension

(i.e. observe the movement across the temporal dimension). For example, by studying the ST-

slices of the drought cluster within a region such as the state of Nebraska, we can first analyze the

trend of the movement of the cluster, and using this trend make prediction about where the

www.manaraa.com

173

drought will move next. Similarly, by studying the TS-slices of the drought cluster within the

state of Nebraska, cyclical patterns of the occurrence of drought can be detected for each county

individually, and predictions can be made of when the county will experience a drought next,

therefore enabling the policy makers and the general public to be better prepared.

Next, we formally define the different types of movements a spatio-temporal cluster may

undergo during its lifetime based on the ST-slice structure of the cluster, and present measures for

detecting the type of movement that has occurred. For this, we have extended the work of Ro-

bertson et al (Robertson, Nelson, Boots, & Wulder, 2007) which defines the different types of

movements possible for a polygon. The movements for a polygonal spatio-temporal cluster are

primarily categorized into four types: 1) displacement, 2) expansion, 3) contraction, 4) no change.

Special types of expansion and contraction have also been defined in Section 6.4. While these

movements are mutually exclusive, more than one type of movement may occur at the same time,

i.e. the cluster may experience expansion and displacement at the same time. Since we focus on

the ST-slices in this chapter, we provide only an introduction to the different types of movements

that a cluster may undergo during its lifetime based on the TS-slice structure of the cluster as an

appendix to this chapter. Further work needs to be done to analyze the TS-slices of the cluster.

 (a) (b) (c)

Figure 72: (a) A simplistic spatio-temporal cluster (b) ST-slices of the spatio-temporal cluster (c) TS-slices of the spa-

tio-temporal cluster

www.manaraa.com

174

Finally, in order to capture the various ST-slice movements of the cluster, and store them

efficiently so that further processing may be done on the movement patterns of the cluster, we

present the Detecting Movements of Spatio Temporal Clusters (DMSTC) algorithm. DMSTC

discovers the different types of movements a spatio-temporal cluster has undergone in its lifetime

along with the degree of change the cluster has experienced along with each movement. The out-

put of the DMSTC algorithm is the movement code of each ST-slice of the spatio-temporal clus-

ter, along with the statistics that reflect the changes in the 1) area covered by the cluster, the 2)

cardinality of the cluster, and 3) the segmentation change in the cluster at each ST-slice or TS-

slice. The change statistics can help in identifying the periods of big changes within the lifetime

of a spatio-temporal cluster. The movement code, on the other hand, is a vector of vectors where

each vector stores the different movements that a ST-slice has undergone. These observations

and statistics allow one to summarize, organize, and store data about the spatio-temporal clusters

that can further be effectively used for the purposes of trend analysis and predictions. For exam-

ple, if we have the movement code for the spatio-temporal cluster of cholera in Haiti, and a simi-

lar movement pattern is observed in another country, then a prediction on how cholera will spread

there can be projected. Thus, the movement code of a spatio-temporal cluster allows us to make

comparisons within two or more clusters by factoring out the space and time. This ability makes

our framework more robust to handle any application, and make comparisons across both space

and time.

In summary, the three main contributions of this chapter are:

1. A formal framework for treating a spatio-temporal cluster equally in the spatial and the

temporal dimension;

2. Formal definitions for different types of movements of a spatio-temporal cluster;

www.manaraa.com

175

3. An algorithm called the Detecting Movements of Spatio Temporal Clusters (DMSTC) al-

gorithm to identify the movements of the spatio-temporal clusters along with the change

statistics.

Furthermore, in this chapter, we study the movements of the spatio-temporal clusters dis-

covered by the STPC algorithm (Joshi, Samal, & Soh, Detecting Spatio-Temporal Polygonal

Clusters Treating Space and Time as First Class Citizens, Under Review) in three diverse do-

mains – swine flu cluster analysis, drought cluster analysis, and crime cluster analysis. For the

swine flu cluster analysis, we study the movements experienced by the swine flu clusters for the

state of California in the year of 2009. For the drought cluster analysis application, we study the

movements of drought clusters within the state of California for the period of January 2000 until

May 2010. Finally, for the crime cluster analysis application, we study the spatio-temporal clus-

ters for the assault crime dataset for the city of Lincoln, NE for a period of five years (2005 –

2009). For all the above applications, we obtain the movement code of the spatio-temporal clus-

ters, along with the change statistics. The movement code of the clusters can be used as input for

trend analysis algorithms, as well as prediction algorithms. The change statistics can be used to

identify periods of significant change within the spatio-temporal clusters.

The rest of the chapter is organized as follows. Section 7.2 presents a brief background

on movements defined for polygons. Section 7.3 defines the various movements possible. Section

7.4 presents the DMSTC algorithm. Section 7.5 discusses our experimental results, and finally

Section 7.6 gives our conclusion and future work.

7.2 Related Work

Sadahiro and Umemura (2001) develop a computation model to study the discontinuous changes

that may occur in static or fixed polygons over time. They define six types of primitive events

that a polygon may experience – 1) generation, 2) disappearance, 3) expansion, 4) shrinkage, 5)

union, and 6) division. The change of polygon distributions is decomposed into a combination of

www.manaraa.com

176

these events. For polygon distributions of consecutive time periods a set of events causing the

change is deduced. Figure 73 presents the primitive events for polygons that lead to changes in

the polygon distributions.

Figure 73: Primitive events for polygons

Robertson et al (2007) extended the work done by (Sadahiro & Umemura, 2001) on anal-

ysis of changes in polygons over time, and added movement as a class of polygon change events.

They define movement to be a class of events where the polygons are related by proximity, i.e.,

movement occurs when a polygon does not overlap, but is within a distance threshold of another

polygon. In other words, Robertson et al only consider events when a completely new polygon is

formed nearby a polygon that existed previously.

Briefly, the following movement patterns are considered from time stamp to time

stamp – Displacement, Convergence, Fragmentation, Concentration, and Divergence (as pre-

sented in Figure 74). Displacement occurs when a polygon that existed at location at time in-

stant has moved to location at time instant where is the movement distance thre-

shold. Convergence occurs when polygons that exist at disappear within d of a polygon that

expands at time . Convergence leads to an overall increase in the area covered by the polygons

at . Fragmentation is also associated with expansion but occurs when polygons at time instant

appear within d of a polygon that has expanded at time . Concentration occurs when polygons

www.manaraa.com

177

at time disappear within of a polygon that has contracted at . Divergence occurs when a

polygon appears at time instant within distance of a polygon that has contracted at .

Figure 74: Movement patterns for polygons

7.3 Movements in a Spatio-Temporal Polygonal Cluster

We have adopted the framework presented by (Sadahiro & Umemura, 2001), (Robertson, Nelson,

Boots, & Wulder, 2007) as presented before in Section 7.2 to discover the dynamics of a poly-

gonal spatio-temporal cluster that tends to move across space with the passage of time. A spatio-

temporal cluster
 consists of:

1. A set of spatio-temporal (ST)-slices

 , where and such that

 represents the set of polygons

 that form each ST-slice at fixed time in-

dex . Henceforth, for simplicity each ST-slice will be represented as
 . The space occu-

pied by the ST-slice
 is denoted as

 .

2. A set of temporal-spatial (TS)-slices

 , where such that

represents the set of time instances that form each TS-slice at fixed space index

 . Henceforth, for simplicity each TS-slice will be represented as

. Each TS-slice

 has

a beginning time instance denoted as , and an ending time instance denoted as

 .

www.manaraa.com

178

We have defined four main types of spatial movements that a polygonal spatio-temporal

cluster may undergo when observed in terms of its ST-slices. Figure 75 illustrates how the com-

parisons between the ST-slices are made in order to discover the spatial movements.

Figure 75: Comparison of ST-slices

M1: Displacement – The polygonal cluster has moved its position at time from its

position at time , i.e.

 , but

 . Thus if

 then

movement = Displacement.

M2: Expansion – More polygons have been added to the cluster leading to an overall in-

crease in the total area covered by
 at time as compared to time , i.e.

 , and

 . Thus if

 then movement = Expansion.

 is the total area of the set of polygons that form the spatio-temporal cluster

at time slice . Therefore,

 where

 is the area covered by

polygon
 .

Two special cases of expansion may occur. These are classified as two sub-types of

movements, and are defined as M2-1 and M2-2.

www.manaraa.com

179

M2-1: Generation – A new polygonal cluster appears at time that did not exist at time

 , i.e.

 where represents an empty set. Thus if

 then

movement = Generation.

M2-2: Merger – Two or more clusters merge together to form a single unified cluster,

the cluster is said to merge, i.e.

 where

 where
 and

are the sub - clusters of
 at time instant . In other words, the number of spatially contiguous

components of the cluster at time is less than the number of spatially contiguous components

of the cluster at time . Thus if

 then movement = Merger.

The function
 computes the number of connected components in ST-slice

 and is described in Algorithm 2 (Figure 76). This algorithm takes as input a graph represen-

tation of the ST-slice
 , and finds the connected components of the graph by performing depth-

first search on each connected component [3]. A ST-slice
 is represented as a graph by consi-

dering each polygon that is a member of ST-slice
 as a vertex of the graph, and if two poly-

gons share a portion of their boundaries, then those two vertices are connected by an edge.

M3: Contraction – The polygonal cluster loses some of its constituent polygons at time

 leading to an overall decrease in the total area covered by the cluster, i.e.

 , and

 . Thus if

 then movement = Contraction.

Similar to expansion, two special cases of contraction may occur. These are classified as

two sub-types of movements, and are defined as M3-1 and M3-2.

M3-1: Disappearance – A polygonal cluster that existed at time no longer exists at

time , i.e.

 . Thus if

 then movement = Disappearance.

M3-2: Fragmentation – A spatially contiguous cluster at time is no longer spatially

contiguous at time , i.e. some of the constituent polygons of the cluster have moved to another

www.manaraa.com

180

cluster at time , therefore splitting the cluster into two parts, i.e.

 and

 . In other words, the number of spatially contiguous components of the cluster at

time is greater than the number of spatially contiguous components of the cluster at time .

Thus if

 , then movement = Fragmentation.

M4: No change– The polygonal cluster remains in exactly the same position and consists

of the same polygons at time as it did in time , i.e.

 , but

 .

In other words, when a polygonal spatio-temporal cluster spans across two time instants without

undergoing any of the movements listed above from M1 to M3-2, then the polygonal spatio-

temporal cluster is said to undergo the No change movement. Thus if

 , then

movement = No change.

Figure 77 presents the movements defined above for a static set of polygons where the

polygons themselves do not move in space; however change their attributes with the passage of

time. Please note that a polygonal spatio-temporal cluster can undergo more than one type of

movement at any given point of time. For example, a cluster may undergo displacement and ex-

pansion at the same time: additional polygons added to one side of the cluster, causing its centro-

id to move and its area size to increase.

Figure 76: The number of connected-components Algorithm

Algorithm 2:
Input: Graph representation

 of ST-slice

Output: Number of connected compo-
nents
Initialize = 1
Initialize stack = empty
Initialize list = empty
For each vertex

If
Call dfs()
Increment by 1

End if
End for
Return

dfs()
Push on
While is not empty

Pop
Add to
For each edge in

If does not contain
Push on
Add to

End if
End for

End while

www.manaraa.com

181

Figure 77: Different types of movements that a polygonal spatio-temporal cluster may undergo

7.4 Detecting Movements Patterns

Based on the definitions of the different types of movements a spatio-temporal cluster can under-

go (Section 7.3), we propose an algorithm – Detecting Movements in ST-Clusters (DMSTC)

(presented in Figure 78), – that discovers the movement pattern of a spatio-temporal cluster.

DMSTC takes as input the spatio-temporal cluster represented as a sequence of ST-slices. At any

given time stamp t, the ST-slice
 of a cluster

 consists of polygons . These are

represented as
 , i.e. the set of polygons that form the spatio-temporal cluster

 at time slice . The function

 returns the number of polygons that form the spatio-

temporal cluster
 at time slice . Using this information, DMSTC applies the eight movement

tests (M1 to M4) and discovers the movements that the cluster goes through from one ST-slice to

another. As the cluster may experience more than one type of movement at the same time, for

example – expansion and displacement, the movements experienced by any ST-slice are stored in

a vector. Thus, the movement code of the spatio-temporal cluster takes the form of a vector of

vectors of movement code for each ST-slice.

Furthermore, DMSTC also measures the changes that occur within the spatio-temporal

cluster from one ST-slice to the next. This change is measured using three different types of

www.manaraa.com

182

measures – cardinality change (c), area change (a), and a segmentation change (s). The defi-

nitions are included in the algorithm. The cardinality change measures the change in the number

of polygons that are a member of the cluster at each time stamp. The area change measures the

change in the total area covered by the cluster from one time-stamp to the next. The segmenta-

tion change measures the change in the number of connected components within the cluster from

one time-stamp to the next. These changes are discovered for all ST-slices of the spatio-temporal

cluster, and stored in the parent vector in addition to the movement code vector. Finally, in order

to track the movement of the spatio-cluster cluster across space with time, DMSTC also finds the

centroid of each ST-slice and stores them in the parent vector.

Using the information generated by DMSTC, the dynamics of the spatio-temporal clus-

ters can be understood in a much better fashion. The movement code can be used to find similar

patterns within different spatio-temporal clusters across the world, and may in turn help in pre-

dicting the future movements of a cluster. Similarly, tracking the movement of the centroids of a

spatio-temporal cluster will enable us to identify the direction of the movement of the cluster.

Thus, several cyclical and seasonal patterns can be discovered using this approach.

7.5 Experimental Analysis

In order to evaluate the effectiveness of the DMSTC algorithm we study the movements of the

spatio-temporal clusters discovered by the STPC algorithm (Joshi, Samal, & Soh, Detecting

Spatio-Temporal Polygonal Clusters Treating Space and Time as First Class Citizens, Under

Review)in three diverse domains – swine flu cluster analysis, drought cluster analysis, and crime

cluster analysis. For the swine flu cluster analysis, we study the movements experienced by the

swine flu clusters for the state of California in the year of 2009. For the drought cluster analysis

application, we study the movements of drought clusters within the state of California for the time

period of January 2000 until May 2010. Finally for the crime cluster analysis, application we

www.manaraa.com

183

study the spatio-temporal clusters for the assault crime dataset for the city of Lincoln, NE for a

time period of five years (2005 – 2009).

Figure 78: The Detecting Movements in ST-Clusters (DMSTC)Algorithm

7.5.1 Detecting Movement Patterns in Swine Flu Clusters

Dataset Description: The input for this experiment consists of a set of spatio-temporal clusters

shown in Figure 79 detected by the STPC clustering algorithm for the swine flu dataset for the

counites of the state of California on a weekly temporal scale from May 28, 2009 to July 16,

2009.

Algorithm 3 DMSTC

Input:

 , The total number of poly-

gons at each time stamp.
Output: Vector of tuples of centroids of connected compo-

nents, cardinality change (c), area change (a), segmenta-

tion change (s), and a vector of movements for each ST-

slice
 .

Initialize Vector
Initialize Vector
Initialize Vector
Initialize Vector
Initialize Vector
 centroids of connected components of

For each ST-slice in

)
End for
Return

Initialize Vector

If

 then

If

 then

If

 then

If

 then)

If

 then

If

 then

If

 then

)

If

 then

Return

www.manaraa.com

184

Figure 79: Swine flu clusters for the state of California

Results: The DMSTC algorithm was applied to the 5 spatio-temporal polygonal clusters

shown in Figure 79. The movement code for the five clusters as discovered by DMSTC is as fol-

lows:

Cluster C1: <Generation>, <Disappearance>, <Re-Generation>, <Displacement, Ex-

pansion>

Cluster C2: <Generation>, <Displacement, Contraction, Fragmentation>, <Displace-

ment, Contraction, Fragmentation>, < Displacement, Expansion, Merger >, < Displacement,

Contraction, Fragmentation >, < Displacement, Contraction, Fragmentation>, < Displacement,

Expansion, Merger >, < Displacement, Expansion>

Cluster C3: <Generation>, <No Change>, <Disappearance>

Cluster C4: <Generation>, <No Change>, <No Change>, <No Change>, <No

Change>, <No Change>, <No Change>, <No Change>

Cluster C5: <Generation>, <Displacement, Contraction>, <Displacement, Expansion>,

<Displacement, Contraction>, <No Change>, <No Change>, <Displacement, Expansion>,

<Displacement, Contraction>

www.manaraa.com

185

The movement code discovered for each of the flu clusters shown above can be used in

order to make preliminary predictions for the future movement of the cluster. For example, as

cluster C3 disappeared after not experiencing any change, cluster C4 is also likely to disappear in

the near future as it has not experienced any other change. Cluster C5, on the other hand, is more

likely to expand in the near future, and therefore more resources should be assigned to this region

in order to prevent the cluster from expanding. The cluster C2 is the most dynamic cluster of all

as it sees a lot of movements along with constant fragmentations and mergers happening during

its lifetime. While the likelihood of the cluster to contract and fragment is the greatest in the near

future, no clear preliminary prediction can be made. In order to predict the future movements of

the cluster based on a mathematical model, a trend analysis algorithm for the movement code

needs to be developed. This will be a part of our research in the near future.

The three types of change statistics, cardinality change , area change , and seg-

mentation change , for selected swine flu clusters are shown in Figures 80, 81 and 82, re-

spectively. The three different change statistics allow us to identify the periods of significant

changes within the lifetime time of a cluster. Looking at Figure 80 we can see that cluster C2

undergoes a lot of change in terms of the number of polygons that are members of the cluster at

different time stamps, i.e. it has many more polygons entering and exiting the cluster during its

lifetime as compared to Clusters C4 and C5. The peaks at time stamps 4, 7 and 8 indicate that the

cluster experiences greatest amount of cardinality change at these time stamps. The cluster C4, on

the other hand, does not change its number of polygons once it is ―born,‖ and as a result, its is

zero between time stamps 2 and 8. While cluster C5 experiences a constant change between time

stamps 2 and 5, and then between 7 and 8; that is, the same number of polygons enter and exit the

cluster at each of these time stamps.

Figure 81 shows the change experienced by the three clusters in terms of the total area

covered by the cluster at each time stamp. Once again we can see that cluster C2 experiences

www.manaraa.com

186

more change than clusters C4 and C5. While cluster C4 does not experience any change in terms

of the area covered by the cluster across time stamps 2 and 8, cluster C5 experiences a constant

change. It is interesting to note that the cardinality change experienced by cluster C5 is more than

the area change experienced by the cluster. This indicates that the ratio of the number of poly-

gons entering and exiting the cluster to the total number of polygons within the cluster is more

than the ratio of the change in the area of the cluster to the total area of the cluster.

Figure 82 shows the segmentation change experienced by the three clusters during their

lifetime. Once again we can see that cluster C2 fragments or merges a lot in its lifetime, whereas

clusters C4 and C5 do not experience any segmentation in their lifetime at all. Therefore, seg-

mentation degree is very different from the cardinality or the area change.

Thus, overall, we can see that cluster C2 is much more dynamic in nature with a lot of

changes in its membership, total area covered, and the number of connected components. There-

fore, while implementing flu mitigation practices, it will be wise to concentrate on this cluster.

7.5.2 Detecting Movement Patterns in Crime Clusters

Dataset Description: For this experiment we studied a selected set of assault spatio-temporal

clusters discovered by STPC from the dataset provided by the chief of police of the city of Lin-

coln, NE, USA. The dataset consists of the time, date, type, and the location of the crime com-

mitted over five years between 2005 and 2009 on a daily scale. The total number of crimes rec-

orded is 153,404. The total number of assault cases in the city of Lincoln from January 2005 un-

til December 2009 is 22,314.

www.manaraa.com

187

Figure 80: Cardinality change for selected swine flu clusters for the state of California

Figure 81: Area change for selected swine flu clusters for the state of California

Figure 82: Segmentation change for selected swine flu clusters for the state of California

Results: The results of DMSTC when applied to the selected set of assault clusters are

shown in Table 19. Each row in the table shows the cluster ID, the time stamp of the cluster, fol-

lowed by the change statistics and the movement code of the cluster at that time stamp. The time

stamps have a range from 1 to 1857 where 1 refers to January 1, 2005 and 1857 refers to Decem-

ber 31, 2009.

Observing the movement code and the change statistics of the clusters shown in Table 19,

we can see that assault clusters do not tend to be distributed in space. This is because there is no

fragmentation or merger in the movement code, and also the value is 0 except for the time

www.manaraa.com

188

stamps when the cluster generates and disappears. Furthermore, based on the movement code of

these clusters we observe that disappearance of an assault cluster is always preceded by a contrac-

tion of the cluster. No conclusion can be derived on the alternation of the Expansion and Contrac-

tion movement of the clusters based on this small set of clusters. Further analysis needs to be per-

formed for this purpose along with the implementation of a trend analysis algorithm.

Table 19: Change statistics along with the movement code for selected assault spatio-temporal clusters.

Cluster ID Time Stamp Movement

0 54 0.0323 0.0011 0.0054 Generation

0 55 0.0161 0.0005 0.0 Displacement Contraction

0 56 0.0161 0.0008 0.0 Displacement Expansion

0 57 0.0005 0.0003 0.0 Displacement Expansion

0 58 0.0054 0.0006 0.0 Displacement Contraction

0 59 0.0108 0.0002 0.0 Displacement Contraction

0 60 0.0269 0.0011 0.0054 Disappearance

Cluster ID Time Stamp Movement

6 667 0.0054 0.0002 0.0054 Generation

6 668 0.0161 0.0006 0.0 Displacement Expansion

6 669 0.0108 0.0011 0.0 Displacement Expansion

6 670 0.0323 0.0005 0.0 Displacement Expansion

6 671 0.0269 0.0013 0.0 Displacement Contraction

6 672 0.0108 0.0005 0.0 Displacement Contraction

6 673 0.0108 0.0007 0.0 Displacement Expansion

6 674 0.0054 0.0003 0.0 Displacement Contraction

6 675 0.0161 0.0008 0.0 Displacement Contraction

6 676 0.0161 0.0003 0.0054 Disappearance

Cluster ID Time Stamp Movement

14 1333 0.0269 0.0019 0.0054 Generation

14 1334 0.0054 0.0011 0.0 Displacement Contraction

14 1335 0.0054 0.0022 0.0 Displacement Expansion

14 1336 0.0054 0.0007 0.0 Displacement Contraction

14 1337 0.0054 0.0008 0.0 Displacement Contraction

14 1338 0.0000 0.0005 0.0 Displacement Contraction

14 1339 0.0161 0.0004 0.0 Displacement Contraction

14 1340 0.0108 0.0005 0.0054 Disappearance

Cluster ID Time Stamp Movement

15 1365 0.0269 0.0007 0.0054 Generation

15 1366 0.0108 0.0001 0.0 Displacement Contraction

15 1367 0.0054 0.0004 0.0 Displacement Contraction

15 1368 0.0054 0.0005 0.0 Displacement Expansion

15 1369 0.0161 0.0012 0.0 Displacement Expansion

15 1370 0.0000 0.0003 0.0 Displacement Expansion

15 1371 0.0108 0.0007 0.0 Displacement Contraction

15 1372 0.0323 0.0011 0.0 Displacement Contraction

15 1373 0.0108 0.0002 0.0054 Disappearance

www.manaraa.com

189

7.5.3 Trend Analysis on California Drought Dataset

Dataset Description: For this experiment we studied a selected set of drought spatio-temporal

clusters discovered by STPC from the the drought dataset for the state of California for the past

10 years (Jan 2000 – May 2010). The dataset was obtained from

drought.unl.edu/dm/dmshps_archive.htm.

Results: Upon the application of the STPC algorithm 15 spatio-temporal polygonal clus-

ters were discovered out of which four clusters were no-drought clusters, and 11 clusters were

drought clusters. The DMSTC algorithm was then applied on the 11 spatio-temporal polygonal

clusters.

In order to further analyze the movement code of the clusters, we observe the different

types of movements that can co-occur. Table 20 lists the different types of movements that can

co-occur, and the movements that cannot occur at the same time (these are depicted as NA). The

numbers listed in Table 20 are computed based on the movement codes of the 11 drought clus-

ters. We can see that Displacement generally occurs with Expansion or Contraction. While in

this case, the number of times Contraction occurs with Displacement is greater than Expansion

occurring with Displacement, but the difference is not large enough to differentiate between the

two. Further, it is interesting to note that the frequency of co-occurrence of Merger of sub-

clusters with Expansion is greater than the frequency of co-occurrence of Merger with Fragmen-

tation. On the other hand, Fragmentation of a big cluster into smaller sub-clusters is generally

accompanied with Contraction.

In addition to the movement code, and the change statistics, DMSTC also finds the cen-

troids of the connected components of the ST-slices of the cluster. Using the centroids, we can

find the general direction the spatio-temporal cluster is moving towards. The centroids of the ST-

slices at each time stamp for the various spatio-temporal drought clusters discovered by STPC are

shown in Figure 83. As the cluster moves in time, expanding or contracting and displacing, the

http://drought.unl.edu/dm/dmshps_archive.htm

www.manaraa.com

190

centroids show the path of the spatio-temporal clustering the spatial domain with the passage of

time. Using this path, trend analysis and future predictions may be made to discover the prospec-

tive location of the cluster. For example, it can be noted that the central and southern California

experience more drought than northern California. The drought cluster indexed as blue expe-

rienced displacements over time and more movements towards May 2008. On the other hand, the

droughts in north California tended to be more static and did not experience any movements.

Table 20: Co-occurrence Matrix showing the Eight Movements that occur together for the California drought dataset

from Jan 2000 to May 2010.

 G D NC DP E C F M

Generation (G) 0 NAa NA NA NA NA NA NA

Disappearance (D) NA 0 NA NA NA NA NA NA

No change (NC) NA NA 0 NA NA NA NA NA

Displacement (DP) NA NA NA 0 60 77 8 8

Expansion (E) NA NA NA 60 0 NA 1 5

Contraction (C) NA NA NA 77 NA 0 7 3

Fragmentation (F) NA NA NA 8 1 7 0 NA

Merger (M) NA NA NA 8 5 3 NA 0

a. NA stands for not applicable, i.e. these two movements cannot occur together.

Figure 83:Centroid movement of four different drought clusters across space with time. Two clusters denoted as trian-

gles are static drought clusters, i.e. they do not move across space in time. The red dots and the blue dots respectively

show the movement of the other two clusters across space during their respective lifetimes as shown.

7.6 Conclusion and Future Work

In conclusion, we have provided a framework that allows one to view a spatio-temporal cluster as

a set of ST-slices or TS-slices. Followed by which we have defined the various movements that a

cluster may experience as it moves from one ST-slice to another, and provided tests that will al-

www.manaraa.com

191

low the user to easily summarize and store the various movements experienced by a spatio-

temporal cluster. Further, we have provided the various change statistics that further help in cap-

turing the dynamics of the cluster in terms of – 1) the change in the number of polygons that are

members of the cluster at each time-stamp, 2) the variations in the total area covered by the clus-

ter at each time stamp, and 3) the changes in the number of connected components of the cluster.

These statistics along with the movement code of a spatio-temporal cluster are computed using

our proposed DMSTC algorithm. In addition, DMSTC also tracks the centroids of the ST-slices

of the spatio-temporal clusters capturing the overall direction of the movement of the cluster.

We have applied the DMSTC algorithm to the spatio-temporal clusters detected in three

diverse domains – swine flu spread analysis, crime cluster analysis, and drought analysis. With

the discovery of the movement code of the clusters belonging to these three distinct domains, we

found that while flu clusters are much more dynamic in nature, crime clusters tend to be more

limited to a given region without experiencing much distributedness in their lifetime. The

drought clusters, on the other hand, tend to move slowly across space and time.

As a part of our future work, we will develop more algorithms that will enable us to cap-

ture the dynamics of the spatio-temporal clusters, and analyze them further in order to help the

policy makers and the general public be more prepared. For example, more features of the clus-

ters can be discovered with the study of the movement code along with the change statistics. For

example with the application of the trend analysis algorithms on the movement code, concrete

predictions can be made about the future movements of the clusters. In order to do so, trend

analysis algorithms that work with categorical variables need to be developed. This will be a part

of our future work, along with the development of other classification and prediction algorithms

that will allow us to compare two or more spatio-temporal clusters based on their movement

codes and change statistics.

www.manaraa.com

192

Furthermore, while we have defined the movements of the TS-slices of the spatio-

temporal clusters (presented in the Appendix), further work needs to be done in order to analyze

the TS-slices. Cyclical and seasonal patterns of a cluster can be discovered by studying the pat-

terns residing within the TS-slices. This also is a part of our immediate future work.

Appendix

We define the four main types of temporal movements that a polygonal spatio-temporal cluster

may undergo when observed in terms of its TS-slices. Figure 84 illustrates how the comparisons

between the TS-slices are made.

Figure 84: Comparison of TS-slices

M1: Displacement – The beginning or the ending of the polygonal cluster is not the

same at location as compared to location , i.e.

 , but or

 . Thus if then temporal movement = Dis-

placement.

M2: Expansion – If the cluster
 spans through greater number of time instances at lo-

cation as compared to location , i.e.

 , and . Thus if

 then temporal movement = Expansion.

www.manaraa.com

193

Two special cases of expansion may occur. These are classified as two sub-types of tem-

poral movements, and are defined as M2-1 and M2-2.

M2-1: Generation – A new polygonal cluster appears at location that did not exist at

location , i.e.

 where represents an empty set. Thus if

then temporal movement = Generation.

M2-2: Merger – The polygonal cluster experiences disappearance and re-generation at

location but it does not exhibit such behavior at location , i.e.

 , and

 . Thus if

 then temporal movement =

Merger.

M3: Contraction – If the cluster
 spans through lesser number of time instances at lo-

cation as compared to location , i.e.

 , and . Thus if

 then temporal movement = Contraction.

Similar to expansion, two special cases of contraction may occur. These are classified as

two sub-types of movements, and are defined as M3-1 and M3-2.

M3-1: Disappearance – A polygonal cluster that existed at location no longer exists at

location , i.e. .

 where represents an empty set. Thus if

then temporal movement = Disappearance.

M3-2: Fragmentation – The polygonal cluster experiences disappearance and re-

generation at location but it did not exhibit such behavior at location , i.e.

 ,

and

 . Thus if

www.manaraa.com

194

 then temporal movement =

Fragmentation.

M4: No change– If the cluster
 spans through exactly the same time instances at loca-

tion as compared to space , i.e.

 , and . In other words, when a po-

lygonal spatio-temporal cluster spans exactly the same time instances across two consecutive lo-

cation without undergoing any of the movements listed above from M1 to M3-2, then the poly-

gonal spatio-temporal cluster is said to undergo the No change movement. Thus if ,

then temporal movement = No change.

Publications

This chapter appears in the following:

1. Joshi, D., Samal, A., & Soh, L-. K. (under preparation), Discovering the Movements of

Spatio-Temporal Polygonal Clusters, to be submitted to International Journal of

Geographical Information Science.

www.manaraa.com

195

Chapter 8: Conclusion

In this research we have addressed the problem of spatial clustering, an important problem in data

mining. Specifically, we have focused on clustering geospatial polygons. This is motivated by

the fact that most anthropogenic objects in the geospatial space are represented as polygons. The

goal is to produce spatially compact and conceptually coherent clusters of polygons taking into

account the principles of 1) spatial extent, 2) spatial attributes, 3) spatial relationships, 4) spatial

autocorrelation, 5) density-connectivity, 6) spatial constraints, and 7) treating space and time as

first-class citizens.

8.1 Summary of Significant Contributions

Specific contributions this research in the area of polygonal spatial clustering are listed below.

 Dissimilarity function for polygons – We have developed a dissimilarity function that

can efficiently measure the dissimilarity between polygons by integrating both non-

spatial attributes and spatial structure and context of the polygons.

 Density-based polygonal spatial clustering – We have developed a density-based clus-

tering algorithm for polygons known as P-DBSCAN that extends the density-based con-

cepts for points to polygons taking into account the structural and topological properties

of the polygons. We have further extended this algorithm to clustering in the presence of

obstacles.

 Constraint-based polygonal spatial clustering – We have developed a suite of con-

straint-based polygonal spatial clustering (CPSC) algorithms that clusters polygons in the

presence of user-defined constraints.

 Spatio-temporal polygonal clustering treating both space and time as first-class citi-

zens – We have developed a spatio-temporal polygonal clustering algorithm in which

www.manaraa.com

196

space and time are treated symmetrically. We have also developed an algorithm to iden-

tify the different movement patterns within spatio-temporal clusters.

The efficiency and efficacy of our algorithms have been demonstrated using real-life da-

tasets from a variety of application domains including: Environmental Applications (watershed

analysis), Public Policy (congressional redistricting, district formation), Climatology (drought

analysis), Crime Analysis (Assault cluster analysis), and Spatial Epidemiology (flu analysis).

8.2 Directions for Future Research

This research can be extended in many different directions. Some important challenges are listed

below:

1. Constraint-Based Spatio-Temporal Polygonal Clustering: The constraint-based spatial

clustering algorithm needs to be extended to take into consideration the temporal dimen-

sion, along with the physical obstacles and facilitators that may be present.

2. Analysis of Spatio-Temporal Polygonal Clusters: More algorithms such as trend analysis

algorithms need to be developed to analyze the meaning of the spatio-temporal polygonal

clusters discovered.

3. Visualization of Spatio-Temporal Polygonal Clusters: Efficient techniques that will allow

the results of the spatio-temporal polygonal clustering algorithms to be visualized more

intuitively need to be formulated.

4. Application of Associative Spatio-Temporal Polygonal Clustering in Spatial Epidemiolo-

gy: Design algorithms for observing the relationship between two clusters from different

datasets but within the same domain. This work would be particularly applied to the field

of spatial epidemiology.

5. Volunteered Geographic Information (VGI) and Citizen Science Applications: Devise

polygonal spatial clustering algorithms for data sets obtained using the VGI systems.

www.manaraa.com

197

These datasets are fundamentally different as the source of the data will be the users of

the system, and issues of confidence and reliability on the data sources will play a key

role.

6. Application of Spatial Polygonal Clustering Algorithms in Biodiversity. As each region

has its own characteristics that play an intrinsic role on the type of life that develops

there, space in turn also plays a vital role in the migration of a species. Thus, the applica-

tion of spatial polygonal clustering on biodiversity datasets will allow us to simultaneous-

ly take into account both the spatial features, and the biological features of a region, and

discover clusters, which in turn will lead to more accurate results and greater insight.

www.manaraa.com

198

References

Aamodt, G., Samuelsen, S. O., & Skrondal, A. (2006). A simulation study of three methods
for detecting disease clusters. International Journal of Health Geographics , 5-15.

Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). Automatic subspace clustering
of high dimensional data for data mining applications. ACM SIGMOD Conference, (pp. 94-105).
Seattle.

Altman, M. (2001). Is Automation the Answer? The Computational Complexity of Automated
Redistricting. Rutgers Computer & Technology Law , 81-142.

Ankerst, M., Breunig, M., Kriegel, H.-P., & Sander, J. (1999). OPTICS: Ordering points to
identify the clustering structure. ACM SIGMOD International Conference on Management of
Data, (pp. 49-60). Philadelphia, PA.

Arkhangel'skii, A., & Pontryagin, L. (1990). General Topology I: Basic Concepts and
Constructions Dimension Theory. Encyclopaedia of Mathematical Sciences .

Bacao, F., Lobo, V., & Painho, M. (2005). Applying genetic algorithms to zone design. Soft
Comput , 341–348.

Basu, S., Banerjee, A., & Mooney, R. J. (2002). Semisupervised clustering by seeding.
Proceedings of 19th International Conference on Machine Learning , (pp. 19-26).

Bodin, L. D. (1973). Democratic representation and apportionment: A Districting Experiment
with a Clustering Algorithm. Annals of New York Academy Sciences , 209 - 214.

Buchin, K., Buchin, M., & Wenk, C. (2006). Computing the Fréchet distance between simple
polygons in polynomial time. Twenty-Second Annual Symposium on Computational Geometry,
(pp. 80-87). Sedona, Arizona, USA.

Clayton, D. M. (2000). African Americans and the Politics of Congressional Redistricting. New
York: New York Garland Publishing Co.

Cliff, A. D., Haggett, P., Ord, J. K., Bassett, K. A., & Davies, R. B. (1975). Elements of Spatial
Structure, A quantitative Approach. Cambridge University Press.

Davidson, I., & Ravi, S. (2005). Clustering with constraints: Feasibility issues and the k-means
algorithm. Proc. of SIAM Int. Conf. of Data Mining.

Davidson, I., & Ravi, S. (2004). Towards efficient and improved hierarchical clustering with
instance and cluster level constraints. Department of Computer Science, University at Albany.

Delaunay, B. (1932). Neue Darstellung der geometrischen Krystallographie. Krystallographie,
Vol. 84 , 109-149.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, Vol 1 , 269-271.

Dobkin, D. P., & Kirkpatrick, D. G. (1985). A Linear algorithm for determining the separation
of convex polyhedra. Journal Algorithm, 6, , 381-392.

www.manaraa.com

199

Donnelly, K. (1978). Simulations to determine the variance and edge effect of total nearest
neighbourhood distance. In Hodder, Simulation methods in archeology, ed. I. (pp. 91-95).
Cambridge: Cambridge University Press.

Egenhofer, M. J., & Franzosa, R. (1994). On the equivalence of topological relations.
International Journal of Geographical Information Systems , 133-152.

Egenhofer, M. J., & Mark, D. M. (1995). Modeling conceptual neighborhoods of topological
line-region relations. International Journal of Geographical Information Systems , 555-565.

Egenhofer, M. J., Clementini, E., & Felice, P. D. (1994). Topological relations between regions
with holes. International Journal of Geographical Information Systems , 129-144.

Ester, M., Frommelt, A., Kriegel, H.-P., & Sander, J. (2000). Spatial data mining: database
primitives, algorithms and efficient DBMS support. Data Mining and Knowledge Discovery , 193-
216.

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering
clusters in large spatial databases with noise. Second Int. Conf. on Knowledge Discovery and
Data Mining , (pp. 226-231). Portland, Oregon.

Estivill-Castro, V., & Lee, I. J. (2000a). AUTOCLUST: Automatic Clustering via Boundary
Extraction for Massive Point-data Sets. Proceedings of the 5th International Conference on
Geocomputation.

Estivill-Castro, V., & Lee, I. J. (2000b). AUTOCLUST+: Automatic Clustering of Point Data Sets
in the Presence of Obstacles. Proc. of Intl. Workshop on Temporal, Spatial and Spatio-Temporal
Data Mining, (pp. 133-146). Lyon, France.

Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering. Machine
Learning , 139 – 172.

Furlong, K., & Gleditsch, N. P. (2003). Geographic Opportunity and Neomalthusian
Willingness: Boundaries, Shared Rivers, and Conflict. The Joint Sessions of Workshops European
Consortium for Political Research .

Gardoll, S. J., Groves, D. I., Knox-Robinson, C. M., Yun, G. Y., & Elliott, N. (2000). Developing
the tools for geological shape analysis, with regional- to local-scale examples from the Kalgoorlie
Terrane of Western Australia. Australian Journal of Earth Sciences, 47(5) , 943 - 953.

Grira, N., Crucianu, M., & Boujemaa, N. (2005). Unsupervised and Semi-supervised
Clustering: a Brief Survey. Review of Machine Learning Techniques for Processing Multimedia
Content, Report of the MUSCLE European Network of Excellence .

Guha, S., Rastogi, R., & Shim, K. (1998). CURE: an efficient clustering algorithm for large
databases. ACM SIGMOD International Conference on Management of Data, (pp. 73 – 84).
Seattle.

Han, J., & Kamber. (2006). Data Mining: Concepts and Techniques. San Fransisco, CA:
Morgan Kaufmann Publishers.

Han, J., Kamber, M., & Tung, A. (2001). Spatial clustering methods in data mining: A Survey.
In Geographic Data Mining and Knowledge Discovery (pp. 1 - 29). Taylor and Francis.

Hayes, B. (1996). Machine Politics. American Scientist , 522-526.

www.manaraa.com

200

Hinneburg, A., & Keim, D. (1998). An efficient approach to clustering in large multimedia
databases with noise. 4th International Conference on Knowledge Discovery and Data Mining,
(pp. 58-65). New York.

Huchtemann, D., & Frondel, M. (2010). Increasing the efficiency of transboundary water
manage-ment: a regionalization approach . Retrieved December 6, 2010, from The Free Library:
http://www.thefreelibrary.com/Increasing the efficiency of transboundary water management:
a...-a0232178567

Hwang, S.-Y., Chien-Ming Lee, & Lee, C.-H. (2008). Discovering Moving Clusters from Spatio-
Temporal Databases. Eighth International Conference on Intelligent Systems Design and
Applications, (pp. 111-114).

Jeung, H., M.L. Yiu, X. Z., Jensen, C., & Shen, H. (2008). Discovery of convoys in trajectory
databases. Proc. VLDB Endowment, vol. 1, no. 1 , 1068-1080.

Jeung, H., Shen, H. T., & Zhou, X. (2008). Convoy queries in spatio-temporal databases.
ICDE'08, (pp. 1457-1459).

Jiao, L., & Liu, Y. (2008). Knowledge Discovery by Spatial Clustering based on Self-Organizing
Feature Map and a Composite Distance Measure. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2 .

Joshi, D., Samal, A., & Soh, L. (2009a). A Dissimilarity Function for Clustering Geospatial
Polygons. 17th International Conference on Advances in Geographic Information Systems (ACM
SIGSPATIAL GIS 2009). Seattle.

Joshi, D., Samal, A. K., & Soh, L. (2009b). Density-Based Clustering of Polygons. IEEE
Symposium Series on Computational Intelligence and Data Mining, (pp. 171-178). Nashville, TN.

Joshi, D., Samal, A., & Soh, L.-.. K. (Under Review). A Dissimilarity Function for Complex
Spatial Polygons. Journal of Geographic Systems .

Joshi, D., Samal, A., & Soh, L.-.. K. (Under Preparation). Analysis of Movement Patterns in
Spatio-Temporal Polygonal Clusters. GeoInformatica .

Joshi, D., Samal, A., & Soh, L.-.. K. (Under Review). Detecting Spatio-Temporal Polygonal
Clusters Treating Space and Time as First Class Citizens. GeoInformatica.

Joshi, D., Samal, A., & Soh, L.-.. K. (Under Preparation). Polygonal Spatial clustering in the
Presence of Obstacles . Transactions in GIS .

Joshi, D., Soh, L., & Samal, A. K. (2009c). Redistricting Using Heuristic-Based Polygonal
Clustering. IEEE International Conference on Data Mining. Miami, FL.

Joshi, D., Soh, L.-.. K., & Samal, A. (Under Review). Redistricting using Constrained Polygonal
Clustering. IEEE Transactions on Knowlegde and Data Engineering .

Kalnis, P., Mamoulis, N., & Bakiras, S. (2005). On Discovering Moving Clusters in Spatio-
Temporal Data. Symposium on Spatial and Temporal Databases (pp. 364–381). Springer.

Kitzinger, J. (2003). The Visibility Graph Among Polygonal Obstacles: a Comparison of
Algorithms. University of New Mexico.

www.manaraa.com

201

Lai, C., & Nguyen, N. T. (2004). Predicting Density-Based Spatial Clusters Over Time. Proc. of
Fourth IEEE International Conf. on Data Mining.

Macmillan, W. (2001). Redistricting in a GIS environment: Am optimization algorithm using
switching points. Journal of Geographical Systems , 167-180.

Mann, H., & Fowle, W. B. (1852). The Common School Journal. Boston: Morris Cotton.

Mayer, J. D. (2000). Geography, ecology and emerging infectious diseases. Social Science &
Medicine 50 , 937-952.

Neill, D. B., Moore, A., Sabhnani, M. R., & Daniel, K. (2005). Detection of emerging space-
timeclusters. Proc. of 11th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining.

Ng, R. T., & Han, J. (2002). CLARANS: A method for clustering objects for spatial data mining.
IEEE Transactions on Knowledge and Data Engineering , 1003-1016.

Ng, R., & Han, J. (1994). Efficient and effective clustering methods for spatial data mining.
20th International Conference on Very Large Databases, (pp. 144 – 155). Santiago, Chile.

Perruchet, C. (1983). Constrained Agglomerative Hierarchical Classification. Pattern
Recognition, 16(2) , 213 – 217.

Peucker, T. K., & Douglas, D. H. (1975). Detection of surface-specific points by local parallel
processing of discrete terrain elevation data. Computer Graphics and Image Processing, 5 , 375-
387.

Poone, J. (1997). The Cosmopolitanization of Trade Regions: Global Trends and Implications,
1965–1990. Economic Geography, Volume 73 , 390-404.

Prager, S. (2010). UCGIS Working Luncheon Results. South Carolina: 2010 UCGIS Summer
Assembly.

Rao, A., & Srinivas, V. (2005). Regionalization of watersheds by hybrid-cluster analysis.
Journal of Hydrology , 37-56.

Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarez Lyle, A., & Wara, M. W. (2004). Regional
climate shifts caused by gradual cooling in the Pliocene epoch. Nature , 263–267.

Robertson, C., Nelson, T. A., Boots, B., & Wulder, M. A. (2007). STAMP: spatial–temporal
analysis of moving polygons. Journal of Geographical Systems , 207-227.

Roehner, B. M. (2002). Patterns of Speculation. Cambridge, UK: Cambridge University Press.

Rote, G. (1991). Computing the minimum Hausdorff distance between two point sets on a
line under translation. Information Processing Letters , 123-127.

Ruiz, C., Spiliopoulou, M., & Ruiz, E. (2007). C-DBSCAN: Density-Based Clustering with
Constraints. 11th Inl. Conf. on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, (pp.
216-223).

Russell, S. J., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Upper Saddle
River, N.J.: Prentice Hall.

Sack, J.-R., & Urrutia, J. (2000). Handbook of Computational Geometry. North-Holland,
Amsterdam.

www.manaraa.com

202

Sadahiro, Y., & Umemura, M. (2001). A computational approach for the analysis of changes
in polygon. Journal of Geographical Systems , 137–154.

Schwartzberg, J. (1996). Reapportionment, gerrymanders, and the notion of compactness.
Minnesota Law Review , 443 – 452.

Shapiro, L., & Stockman, G. (2001). Computer Vision. Prentice Hall.

Sheikholeslami, G., Chatterjee, S., & Zhang, A. (1998). WaveCluster: A Multi-Resolution
Clustering Approach for Very Large Spatial Databases. 24th Very Large Databases Conference
(VLDB 98). New York.

Shekhar, S., & Zhang, P. (2004). Spatial Data Mining: Accomplishments and Research Needs
(Keynote Speech). GIScience.

Shekhar, S., Zhang, P., Huang, Y., & Vatsavai, R. R. (2003). Trends in Spatial Data Mining. In
H. Kargupta, & A. Joshi, Data Mining: Next Generation Challenges and Future Directions.
AAAI/MIT Press.

Stolorz, P. (1995). Fast Spatio-Temporal Data Mining of Large Geophysical Datasets. Proc. Of
the First International Conference on Data Mining, (pp. 300-305).

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the Number of Clusters in a Data
Set via the Gap Statistic. Journal of the Royal Statistical Society , 411-423.

Tobler, W. (1979). Cellular Geography, Philosophy in Geography. Dordrecht, Reidel: Gale and
Olsson, Eds.

Tung, A., Hou, J., & Han, J. (2001). Spatial Clustering in the Presence of Obstacles. Intl. Conf.
On Data Engineering, (pp. 359-367). Heidelberg, Germany.

Turi, R., & Ray, S. (1998). K-means clustering for colour image segmentation with automatic
detection of k. Proceedings of International Conference on Signal and image Processing, (pp.
345-349). Las Vegas, Nevada.

Wagstaff, K., Cardie, C., Rogers, S., & Schroedl. (2001). Constrained K-Means Clustering with
Background Knowledge. Proc. of 18th Inl. Conf of Machine Learning, (pp. 577-584).

Wang, W., Yang, J., & Muntz, R. (1997). STING: A Statistical Information Grid Approach to
Spatial Data Mining. 23rd Very Large Databases Conference . Athens, Greece.

Wang, X., & Hamilton, H. J. (2003). DBRS: A Density-Based Spatial Clustering Method with
Random Sampling. 7th PAKDD, (pp. 563-575). Seoul, Korea.

Wang, X., Rostoker, C., & Hamilton, H. (2004). Density-Based Spatial Clustering in the
Presence of Obstacles and Facilitators. Eighth European Conference on Principles and Practice of
Knowledge Discovery in Databases , (pp. 446-458). Pisa, Italy.

Webster, R., & Burrough, P. (1972). Computer-Based Soil Mapping of small areas from
sample data. Journal of Soil Science, 23(2) , 210 - 234.

Yoon, H., & Shahabi, C. (2009). Accurate discovery of valid convoys from moving object
trajectories. IEEE International Conference on Data Mining Workshops, (pp. 636-643). Miami, FL.

Yuan, M. (2010, November 17). GIScience Approaches to Understanding Geographic
Dynamics. Lincoln, NE.

www.manaraa.com

203

Zaïane, O. R., & Lee, C. H. (2002). Clustering Spatial Data When Facing Physical Constraints.
IEEE International Conf. on Data Mining, (pp. 737-740). Maebashi City, Japan.

Zhang, P., Huang, Y., Shekhar, S., & Kumar, V. (2003). Exploiting Spatial Autocorrelation to
Efficiently Process Correlation-Based Similarity Queries. Proc. of the 8th Intl. Symp. on Spatial
and Temporal Databases.

Zhang, T., Ramakrishnan, & Linvy, M. (1996). BIRCH: an efficient data clustering method for
very large databases. ACM SIGMOD International Conference on Management of Data, (pp. 103
– 114).

Zhang, X., Wang, J., Wu, F., Fan, Z., & Li, X. (2006). A Novel Spatial Clustering with Obstacles
Constraints Based on Genetic Algorithms and K-Medoids. Sixth International Conference on
Intelligent Systems Design and Applications , (pp. 605-610).

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	4-2011

	Polygonal Spatial Clustering
	Deepti Joshi

	tmp.1302226922.pdf.5oQVG

